Keywords: sliding mode; nonlinear systems; absolute continuous approximations
@article{10_14736_kyb_2014_1_0005,
author = {Gil Garc{\'\i}a, Arturo Enrique and Azhmyakov, Vadim and Basin, Michael V.},
title = {Optimal control processes associated with a class of discontinuous control systems: {Applications} to sliding mode dynamics},
journal = {Kybernetika},
pages = {5--18},
year = {2014},
volume = {50},
number = {1},
doi = {10.14736/kyb-2014-1-0005},
mrnumber = {3195001},
zbl = {1302.93222},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-1-0005/}
}
TY - JOUR AU - Gil García, Arturo Enrique AU - Azhmyakov, Vadim AU - Basin, Michael V. TI - Optimal control processes associated with a class of discontinuous control systems: Applications to sliding mode dynamics JO - Kybernetika PY - 2014 SP - 5 EP - 18 VL - 50 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-1-0005/ DO - 10.14736/kyb-2014-1-0005 LA - en ID - 10_14736_kyb_2014_1_0005 ER -
%0 Journal Article %A Gil García, Arturo Enrique %A Azhmyakov, Vadim %A Basin, Michael V. %T Optimal control processes associated with a class of discontinuous control systems: Applications to sliding mode dynamics %J Kybernetika %D 2014 %P 5-18 %V 50 %N 1 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2014-1-0005/ %R 10.14736/kyb-2014-1-0005 %G en %F 10_14736_kyb_2014_1_0005
Gil García, Arturo Enrique; Azhmyakov, Vadim; Basin, Michael V. Optimal control processes associated with a class of discontinuous control systems: Applications to sliding mode dynamics. Kybernetika, Tome 50 (2014) no. 1, pp. 5-18. doi: 10.14736/kyb-2014-1-0005
[1] Aliprantis, C. D., Border, K. C.: Infinite Dimensional Analysis. Springer, Berlin 1999. | MR | Zbl
[2] Atkinson, K., Han, W.: Theoretical Numerical Analysis. Springer, New York 2005. | MR | Zbl
[3] Gómez-Gutiérrez, D., Čelikovský, S., Ramírez-Trevino, A., Ruiz-León, J., Gennaro, S. Di: Robust regulation via sliding modes of a rotary inverted pendulum. In: Preprints 3rd IFAC Symposium on Robust Control Design, ÚTIA AV ČR, Praha 2000.
[4] Attia, S. A., Azhmyakov, V., Raisch, J.: On an optimization problem for a class of impulsive hybrid systems. In: Discrete Event Dynamical Systems, 2009. | MR | Zbl
[5] Azhmyakov, V., Raisch, J.: Convex control systems and convex optimal control problems with constraints. IEEE Trans. Automat. Control 53 (2008), 993-998. | DOI | MR
[6] Azhmyakov, V., Boltyanski, V. G., Poznyak, A.: Optimal control of impulsive hybrid systems. Nonlinear Anal.: Hybrid Systems 2 (2008), 1089-1097. | MR | Zbl
[7] Azhmyakov, V., Galvan-Guerra, R., Egerstedt, M.: Hybrid LQ-optimization using dynamic programming. In: Proc. 2009 American Control Conference, St. Louis 2009, pp. 3617-3623.
[8] Azhmyakov, V., Egerstedt, M., Fridman, L., Poznyak, A.: Continuity properties of nonlinear affine control systems: applications to hybrid and sliding mode dynamics. In: Proc. 2009 IFAC Conference on Analysis and Design of Hybrid Systems, Zaragoza 2009, pp. 204-209.
[9] Azhmyakov, V., Boltyanski, V. G., Poznyak., A.: The dynamic programming approach to multi-model robust optimization. Nonlinear Anal.: Theory, Methods Applications 72 (2010), 1110-1119. | MR
[10] Azhmyakov, V.: Optimal control of sliding mode processes: A general approach. In: Proc. 11th International Workshop on Variable Structure Systems, Mexico City 2010, pp. 504-509.
[11] Basin, V. Azhmyakov M., García, A. E. Gil: A general approach to optimal control processes associated with a class of discontinuous control systems: Applications to the sliding mode dynamics. In: Proc. 2012 IEEE International Conference on Control Applications, Dubrovnik 2012, pp. 1154-1159.
[12] Bartolini, G., Fridman, L., Pisano, A., (eds.), E. Usai: Modern Sliding Mode Control Theory. Lecture Notes in Control and Inform. Sci. 375, Springer, Berlin 2008. | MR | Zbl
[13] Berkovitz, L. D.: Optimal Control Theory. Springer, New York 1974. | MR | Zbl
[14] Boiko, I.: Discontinuous Control Systems Frequency-Domain Analysis and Design. Birkhauser, New York 2009. | MR | Zbl
[15] Boiko, I., Fridman, L., Pisano, A., Usai, E.: On the transfer properties of the ``generalized sub-optimal" second-order sliding mode control algorithm. IEEE Trans. Automat. Control 54 (2009), 399-403. | DOI | MR
[16] Čelikovský, S.: Numerical algorithm for nonsmooth stabilization of triangular form systems. Kybernetika 32 (1996), 261-274. | MR | Zbl
[17] Branicky, M. S., Borkar, V. S., Mitter, S. K.: A unifed framework for hybrid control: model and optimal control theory. IEEE Trans. Automat. Control 43 (1998), 31-45. | DOI | MR
[18] Caines, P., Egerstedt, M., Malhame, R., Schoellig, A.: A hybrid Bellman equation for bimodal systems. Lecture Notes in Computer Sci. 4416, Springer, Berlin 2007, pp. 656-659. | DOI | Zbl
[19] Deimling, K.: Multivalued Differential Equations. de Gruyter, Berlin 1992. | MR | Zbl
[20] Edwards, R. E.: Functional Analysis. Dover, New York 1995. | MR | Zbl
[21] Egerstedt, M., Wardi, Y., Axelsson, H.: Transition-time optimization for switched-mode dynamical systems. IEEE Trans. Automat. Control 51 (2006), 110-115. | DOI | MR
[22] Fattorini, H. O.: Infinite-Dimensional Optimization and Control Theory. Cambridge University Press, Cambridge 1999. | MR | Zbl
[23] Ferrara, A., Rubbagoti, M.: A sub-optimal second order sliding mode controller for systems with saturating actuators. IEEE Trans. Automat. Control 54 (2009), 1082-1087. | DOI | MR
[24] Filippov, A. F.: Differential Equations with Discontinuous Right-Hand Sides. Kluwer, Dordrecht 1988. | Zbl
[25] Gallardo-Hernández, A. G., Fridman, L., Islas-Andrade, S., Shtessel, Y.: Quasi-continuous high order sliding modes controllers applied to glucose-insulin regulatory system models. In: Proc. 47th IEEE Conference on Decision and Control, Cancun 2008, pp. 2208-2213.
[26] Gamkrelidze, R.: Principles of Optimal Control Theory. Plenum Press, London 1978. | MR | Zbl
[27] Gómez-Gutiérrez, D., Čelikovský, S., Ramírez-Trevino, A., Ruiz-León, J., Gennaro, S. Di: Sliding mode observer for switched linear systems. In: Proc. 2011 IEEE Conference on Automation Science and Engineering, IEEE Conference on Automation Science and Engineering, Trieste 2011.
[28] Haddad, W. M., Chellaboina, V.: Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach. Princeton University Press, New Jersey 2008. | MR | Zbl
[29] Hale, J.: Ordinary Differential Equations. J. Wiley, New York 1969. | MR | Zbl
[30] Himmelberg, C. J.: Measurable relations. Fund. Math. 87 (1975), 53-72. | MR | Zbl
[31] Isidori, A.: Nonlinear Control Systems. Springer, New York 1989. | MR | Zbl
[32] Jahn, J.: Introduction to the Theory of Nonlinear Optimization. Springer, Berlin 2007. | MR | Zbl
[33] Khalil, H. K.: Nonlinear Systems. Prentice Hall, New Jersey 2001. | Zbl
[34] Levant, A.: Universal SISO sliding-mode controllers with finite-time convergence. IEEE Trans. Automat. Control 46 (2001), 1447-1451. | DOI | MR
[35] Liberzon, D.: Switching in Systems and Control. Birkhäuser, Boston 2003. | MR | Zbl
[36] Orlov, Y.: Discontinuous Systems: Lyapunov Analysis and Robust Synthesis under Uncertainty Conditions. Springer, New York 2008. | MR | Zbl
[37] Paden, B. E., Sastry, S. S.: Calculus for computing Filippov's differential inclusion with application to the variable structure control of robot manipulator. IEEE Trans. Circuits Systems 34 (1987), 73-82. | DOI | MR
[38] Poznyak, A.: Advanced Mathematical Tools for Automatic Control Engineers. Elsevier, Amsterdam 2008.
[39] Boltyanski, V. G., Poznyak, A.: The Robust Maximum Principle. Birkhäuser, Boston 2011. | MR | Zbl
[40] Pytlak, R.: Numerical Methods for Optimal Control Problems with State Constraints. Springer-Verlag, Berlin 1999. | MR | Zbl
[41] Rockafellar, R. T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14 (1976), 877-898. | DOI | MR | Zbl
[42] Ramos-Velasco, L. E., Ruiz-León, J. J., Čelikovský, S.: Rotary inverted pendulum: Trajectory tracking via nonlinear control techniques. Kybernetika 38 (2002), 217-232. | MR | Zbl
[43] Roubíček, T.: Approximation theory for generalized young measures. Numer. Funct. Anal. Optim. 16 (1995), 1233-1253. | DOI | MR | Zbl
[44] Shaikh, M. S., Caines, P. E.: On the hybrid optimal control problem: theory and algorithms. IEEE Trans. Automat. Control 52 (2007), 1587-1603. | DOI | MR
[45] Utkin, V.: Sliding Modes in Control and Optimization. Springer, Berlin 1992. | MR | Zbl
Cité par Sources :