On the range of some elementary operators
Commentationes Mathematicae Universitatis Carolinae, Tome 65 (2024) no. 1, pp. 53-62
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $L(H)$ denote the algebra of all bounded linear operators on a complex infinite dimensional Hilbert space $H$. For $A,B\in L(H)$, the generalized derivation $\delta_{A,B}$ and the multiplication operator $M_{A,B}$ are defined on $L(H)$ by $\delta_{A,B}(X)=AX-XB$ and $M_{A,B}(X)=AXB$. In this paper, we give a characterization of bounded operators $A$ and $B$ such that the range of $M_{A,B}$ is closed. We present some sufficient conditions for $\delta_{A,B}$ to have closed range. Some related results are also given.
Let $L(H)$ denote the algebra of all bounded linear operators on a complex infinite dimensional Hilbert space $H$. For $A,B\in L(H)$, the generalized derivation $\delta_{A,B}$ and the multiplication operator $M_{A,B}$ are defined on $L(H)$ by $\delta_{A,B}(X)=AX-XB$ and $M_{A,B}(X)=AXB$. In this paper, we give a characterization of bounded operators $A$ and $B$ such that the range of $M_{A,B}$ is closed. We present some sufficient conditions for $\delta_{A,B}$ to have closed range. Some related results are also given.
DOI : 10.14712/1213-7243.2025.004
Classification : 47A16, 47A30, 47B07, 47B20, 47B47
Keywords: generalized derivation; elementary operator; generalized inverse; Kato spectrum
@article{10_14712_1213_7243_2025_004,
     author = {El Mouadine, Hamza and Faouzi, Abdelkhalek and Bouhafsi, Youssef},
     title = {On the range of some elementary operators},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {53--62},
     year = {2024},
     volume = {65},
     number = {1},
     doi = {10.14712/1213-7243.2025.004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2025.004/}
}
TY  - JOUR
AU  - El Mouadine, Hamza
AU  - Faouzi, Abdelkhalek
AU  - Bouhafsi, Youssef
TI  - On the range of some elementary operators
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2024
SP  - 53
EP  - 62
VL  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2025.004/
DO  - 10.14712/1213-7243.2025.004
LA  - en
ID  - 10_14712_1213_7243_2025_004
ER  - 
%0 Journal Article
%A El Mouadine, Hamza
%A Faouzi, Abdelkhalek
%A Bouhafsi, Youssef
%T On the range of some elementary operators
%J Commentationes Mathematicae Universitatis Carolinae
%D 2024
%P 53-62
%V 65
%N 1
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2025.004/
%R 10.14712/1213-7243.2025.004
%G en
%F 10_14712_1213_7243_2025_004
El Mouadine, Hamza; Faouzi, Abdelkhalek; Bouhafsi, Youssef. On the range of some elementary operators. Commentationes Mathematicae Universitatis Carolinae, Tome 65 (2024) no. 1, pp. 53-62. doi: 10.14712/1213-7243.2025.004

Cité par Sources :