On the range of some elementary operators
Commentationes Mathematicae Universitatis Carolinae, Tome 65 (2024) no. 1, pp. 53-62
Let $L(H)$ denote the algebra of all bounded linear operators on a complex infinite dimensional Hilbert space $H$. For $A,B\in L(H)$, the generalized derivation $\delta_{A,B}$ and the multiplication operator $M_{A,B}$ are defined on $L(H)$ by $\delta_{A,B}(X)=AX-XB$ and $M_{A,B}(X)=AXB$. In this paper, we give a characterization of bounded operators $A$ and $B$ such that the range of $M_{A,B}$ is closed. We present some sufficient conditions for $\delta_{A,B}$ to have closed range. Some related results are also given.
Let $L(H)$ denote the algebra of all bounded linear operators on a complex infinite dimensional Hilbert space $H$. For $A,B\in L(H)$, the generalized derivation $\delta_{A,B}$ and the multiplication operator $M_{A,B}$ are defined on $L(H)$ by $\delta_{A,B}(X)=AX-XB$ and $M_{A,B}(X)=AXB$. In this paper, we give a characterization of bounded operators $A$ and $B$ such that the range of $M_{A,B}$ is closed. We present some sufficient conditions for $\delta_{A,B}$ to have closed range. Some related results are also given.
Classification :
47A16, 47A30, 47B07, 47B20, 47B47
Keywords: generalized derivation; elementary operator; generalized inverse; Kato spectrum
Keywords: generalized derivation; elementary operator; generalized inverse; Kato spectrum
@article{10_14712_1213_7243_2025_004,
author = {El Mouadine, Hamza and Faouzi, Abdelkhalek and Bouhafsi, Youssef},
title = {On the range of some elementary operators},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {53--62},
year = {2024},
volume = {65},
number = {1},
doi = {10.14712/1213-7243.2025.004},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2025.004/}
}
TY - JOUR AU - El Mouadine, Hamza AU - Faouzi, Abdelkhalek AU - Bouhafsi, Youssef TI - On the range of some elementary operators JO - Commentationes Mathematicae Universitatis Carolinae PY - 2024 SP - 53 EP - 62 VL - 65 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2025.004/ DO - 10.14712/1213-7243.2025.004 LA - en ID - 10_14712_1213_7243_2025_004 ER -
%0 Journal Article %A El Mouadine, Hamza %A Faouzi, Abdelkhalek %A Bouhafsi, Youssef %T On the range of some elementary operators %J Commentationes Mathematicae Universitatis Carolinae %D 2024 %P 53-62 %V 65 %N 1 %U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2025.004/ %R 10.14712/1213-7243.2025.004 %G en %F 10_14712_1213_7243_2025_004
El Mouadine, Hamza; Faouzi, Abdelkhalek; Bouhafsi, Youssef. On the range of some elementary operators. Commentationes Mathematicae Universitatis Carolinae, Tome 65 (2024) no. 1, pp. 53-62. doi: 10.14712/1213-7243.2025.004
Cité par Sources :