Induced mappings on hyperspaces $F_n^K(X)$
Commentationes Mathematicae Universitatis Carolinae, Tome 65 (2024) no. 1, pp. 79-97
Given a metric continuum $X$ and a positive integer $n$, $F_{n}(X)$ denotes the hyperspace of all nonempty subsets of $X$ with at most $n$ points endowed with the Hausdorff metric. For $K\in F_{n}(X)$, $F_{n}(K,X)$ denotes the set of elements of $F_{n}(X)$ containing $K$ and $F_{n}^K(X)$ denotes the quotient space obtained from $F_{n}(X)$ by shrinking $F_{n}(K,X)$ to one point set. Given a map $f\colon X\to Y$ between continua, $f_{n}\colon F_{n}(X)\to F_{n}(Y)$ denotes the induced map defined by $f_{n}(A)=\nobreak f(A)$. Let $K\in F_{n}(X)$, we shall consider the induced map in the natural way $f_{n,K}\colon F_{n}^K(X)\to F_{n}^{f(K)}(Y)$. In this paper we consider the maps $f$, $f_{n}$, $f_{n,K}$ for some $K\in F_n(X)$ and $f_{n,K}$ for each $K\in F_n(X)$; and we study relationship between them for the following classes of maps: homeomorphisms, monotone, confluent, light and open maps.
Given a metric continuum $X$ and a positive integer $n$, $F_{n}(X)$ denotes the hyperspace of all nonempty subsets of $X$ with at most $n$ points endowed with the Hausdorff metric. For $K\in F_{n}(X)$, $F_{n}(K,X)$ denotes the set of elements of $F_{n}(X)$ containing $K$ and $F_{n}^K(X)$ denotes the quotient space obtained from $F_{n}(X)$ by shrinking $F_{n}(K,X)$ to one point set. Given a map $f\colon X\to Y$ between continua, $f_{n}\colon F_{n}(X)\to F_{n}(Y)$ denotes the induced map defined by $f_{n}(A)=\nobreak f(A)$. Let $K\in F_{n}(X)$, we shall consider the induced map in the natural way $f_{n,K}\colon F_{n}^K(X)\to F_{n}^{f(K)}(Y)$. In this paper we consider the maps $f$, $f_{n}$, $f_{n,K}$ for some $K\in F_n(X)$ and $f_{n,K}$ for each $K\in F_n(X)$; and we study relationship between them for the following classes of maps: homeomorphisms, monotone, confluent, light and open maps.
Classification :
54B15, 54B20, 54C05, 54C10
Keywords: continuum; symmetric product; quotient space; hyperspace; induced mapping
Keywords: continuum; symmetric product; quotient space; hyperspace; induced mapping
@article{10_14712_1213_7243_2024_016,
author = {Casta\~neda-Alvarado, Enrique and Mondrag\'on-Alvarez, Roberto C. and Ordo\~nez, Norberto},
title = {Induced mappings on hyperspaces $F_n^K(X)$},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {79--97},
year = {2024},
volume = {65},
number = {1},
doi = {10.14712/1213-7243.2024.016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2024.016/}
}
TY - JOUR AU - Castañeda-Alvarado, Enrique AU - Mondragón-Alvarez, Roberto C. AU - Ordoñez, Norberto TI - Induced mappings on hyperspaces $F_n^K(X)$ JO - Commentationes Mathematicae Universitatis Carolinae PY - 2024 SP - 79 EP - 97 VL - 65 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2024.016/ DO - 10.14712/1213-7243.2024.016 LA - en ID - 10_14712_1213_7243_2024_016 ER -
%0 Journal Article %A Castañeda-Alvarado, Enrique %A Mondragón-Alvarez, Roberto C. %A Ordoñez, Norberto %T Induced mappings on hyperspaces $F_n^K(X)$ %J Commentationes Mathematicae Universitatis Carolinae %D 2024 %P 79-97 %V 65 %N 1 %U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2024.016/ %R 10.14712/1213-7243.2024.016 %G en %F 10_14712_1213_7243_2024_016
Castañeda-Alvarado, Enrique; Mondragón-Alvarez, Roberto C.; Ordoñez, Norberto. Induced mappings on hyperspaces $F_n^K(X)$. Commentationes Mathematicae Universitatis Carolinae, Tome 65 (2024) no. 1, pp. 79-97. doi: 10.14712/1213-7243.2024.016
Cité par Sources :