Induced mappings on hyperspaces $F_n^K(X)$
Commentationes Mathematicae Universitatis Carolinae, Tome 65 (2024) no. 1, pp. 79-97
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Given a metric continuum $X$ and a positive integer $n$, $F_{n}(X)$ denotes the hyperspace of all nonempty subsets of $X$ with at most $n$ points endowed with the Hausdorff metric. For $K\in F_{n}(X)$, $F_{n}(K,X)$ denotes the set of elements of $F_{n}(X)$ containing $K$ and $F_{n}^K(X)$ denotes the quotient space obtained from $F_{n}(X)$ by shrinking $F_{n}(K,X)$ to one point set. Given a map $f\colon X\to Y$ between continua, $f_{n}\colon F_{n}(X)\to F_{n}(Y)$ denotes the induced map defined by $f_{n}(A)=\nobreak f(A)$. Let $K\in F_{n}(X)$, we shall consider the induced map in the natural way $f_{n,K}\colon F_{n}^K(X)\to F_{n}^{f(K)}(Y)$. In this paper we consider the maps $f$, $f_{n}$, $f_{n,K}$ for some $K\in F_n(X)$ and $f_{n,K}$ for each $K\in F_n(X)$; and we study relationship between them for the following classes of maps: homeomorphisms, monotone, confluent, light and open maps.
Given a metric continuum $X$ and a positive integer $n$, $F_{n}(X)$ denotes the hyperspace of all nonempty subsets of $X$ with at most $n$ points endowed with the Hausdorff metric. For $K\in F_{n}(X)$, $F_{n}(K,X)$ denotes the set of elements of $F_{n}(X)$ containing $K$ and $F_{n}^K(X)$ denotes the quotient space obtained from $F_{n}(X)$ by shrinking $F_{n}(K,X)$ to one point set. Given a map $f\colon X\to Y$ between continua, $f_{n}\colon F_{n}(X)\to F_{n}(Y)$ denotes the induced map defined by $f_{n}(A)=\nobreak f(A)$. Let $K\in F_{n}(X)$, we shall consider the induced map in the natural way $f_{n,K}\colon F_{n}^K(X)\to F_{n}^{f(K)}(Y)$. In this paper we consider the maps $f$, $f_{n}$, $f_{n,K}$ for some $K\in F_n(X)$ and $f_{n,K}$ for each $K\in F_n(X)$; and we study relationship between them for the following classes of maps: homeomorphisms, monotone, confluent, light and open maps.
DOI : 10.14712/1213-7243.2024.016
Classification : 54B15, 54B20, 54C05, 54C10
Keywords: continuum; symmetric product; quotient space; hyperspace; induced mapping
@article{10_14712_1213_7243_2024_016,
     author = {Casta\~neda-Alvarado, Enrique and Mondrag\'on-Alvarez, Roberto C. and Ordo\~nez, Norberto},
     title = {Induced mappings on hyperspaces $F_n^K(X)$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {79--97},
     year = {2024},
     volume = {65},
     number = {1},
     doi = {10.14712/1213-7243.2024.016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2024.016/}
}
TY  - JOUR
AU  - Castañeda-Alvarado, Enrique
AU  - Mondragón-Alvarez, Roberto C.
AU  - Ordoñez, Norberto
TI  - Induced mappings on hyperspaces $F_n^K(X)$
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2024
SP  - 79
EP  - 97
VL  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2024.016/
DO  - 10.14712/1213-7243.2024.016
LA  - en
ID  - 10_14712_1213_7243_2024_016
ER  - 
%0 Journal Article
%A Castañeda-Alvarado, Enrique
%A Mondragón-Alvarez, Roberto C.
%A Ordoñez, Norberto
%T Induced mappings on hyperspaces $F_n^K(X)$
%J Commentationes Mathematicae Universitatis Carolinae
%D 2024
%P 79-97
%V 65
%N 1
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2024.016/
%R 10.14712/1213-7243.2024.016
%G en
%F 10_14712_1213_7243_2024_016
Castañeda-Alvarado, Enrique; Mondragón-Alvarez, Roberto C.; Ordoñez, Norberto. Induced mappings on hyperspaces $F_n^K(X)$. Commentationes Mathematicae Universitatis Carolinae, Tome 65 (2024) no. 1, pp. 79-97. doi: 10.14712/1213-7243.2024.016

Cité par Sources :