The algebraic structure of pseudomeadow
Commentationes Mathematicae Universitatis Carolinae, Tome 65 (2024) no. 1, pp. 13-30
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The purpose of this paper is to study the commutative pseudomeadows, the structure which is defined in the same way as commutative meadows, except that the existence of a multiplicative identity is not required. We extend the characterization of finite commutative meadows, given by I. Bethke, P. Rodenburg, and A. Sevenster in their paper (2015), to the case of commutative pseudomeadows with finitely many idempotents. We also extend the well-known characterization of general commutative meadows as the subdirect products of fields to the case of commutative pseudomeadows. Finally, we investigate localizations of commutative pseudomeadows.
The purpose of this paper is to study the commutative pseudomeadows, the structure which is defined in the same way as commutative meadows, except that the existence of a multiplicative identity is not required. We extend the characterization of finite commutative meadows, given by I. Bethke, P. Rodenburg, and A. Sevenster in their paper (2015), to the case of commutative pseudomeadows with finitely many idempotents. We also extend the well-known characterization of general commutative meadows as the subdirect products of fields to the case of commutative pseudomeadows. Finally, we investigate localizations of commutative pseudomeadows.
DOI : 10.14712/1213-7243.2024.014
Classification : 08A05, 08A70, 08A99, 08B26, 13M99, 68Q65
Keywords: absolutely flat ring; direct product of fields; idempotent; meadow; pseudomeadow; pseudoring; subdirect product of fields; von Neumann regular ring
@article{10_14712_1213_7243_2024_014,
     author = {Kulosman, Hamid},
     title = {The algebraic structure of pseudomeadow},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {13--30},
     year = {2024},
     volume = {65},
     number = {1},
     doi = {10.14712/1213-7243.2024.014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2024.014/}
}
TY  - JOUR
AU  - Kulosman, Hamid
TI  - The algebraic structure of pseudomeadow
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2024
SP  - 13
EP  - 30
VL  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2024.014/
DO  - 10.14712/1213-7243.2024.014
LA  - en
ID  - 10_14712_1213_7243_2024_014
ER  - 
%0 Journal Article
%A Kulosman, Hamid
%T The algebraic structure of pseudomeadow
%J Commentationes Mathematicae Universitatis Carolinae
%D 2024
%P 13-30
%V 65
%N 1
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2024.014/
%R 10.14712/1213-7243.2024.014
%G en
%F 10_14712_1213_7243_2024_014
Kulosman, Hamid. The algebraic structure of pseudomeadow. Commentationes Mathematicae Universitatis Carolinae, Tome 65 (2024) no. 1, pp. 13-30. doi: 10.14712/1213-7243.2024.014

Cité par Sources :