Some results on quasi-t-dual Baer modules
Commentationes Mathematicae Universitatis Carolinae, Tome 64 (2023) no. 4, pp. 411-427
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $R$ be a ring and let $M$ be an $R$-module with $S=\rm{End}_R(M)$. Consider the preradical ${\mkern 1.5mu\overline{\mkern-3.5mu Z \mkern-.5mu}\mkern 1.5mu}$ for the category of right $R$-modules Mod-$R$ introduced by Y. Talebi and N. Vanaja in 2002 and defined by ${\mkern 1.5mu\overline{\mkern-3.5mu Z \mkern-.5mu}\mkern 1.5mu}(M) = \bigcap \{U\leq M\colon M/U$ is small in its injective hull$\}$. The module $M$ is called quasi-t-dual Baer if $\sum_{\varphi \in \mathfrak{I}} \varphi({{\mkern 1.5mu\overline{\mkern-3.5mu Z \mkern-.5mu}\mkern 1.5mu}}^2(M))$ is a direct summand of $M$ for every two-sided ideal $\mathfrak{I}$ of $S$, where ${{\mkern 1.5mu\overline{\mkern-3.5mu Z \mkern-.5mu}\mkern 1.5mu}}^2(M) = {{\mkern 1.5mu\overline{\mkern-3.5mu Z \mkern-.5mu}\mkern 1.5mu}} ({{\mkern 1.5mu\overline{\mkern-3.5mu Z \mkern-.5mu}\mkern 1.5mu}}(M))$. In this paper, we show that $M$ is quasi-t-dual Baer if and only if ${{\mkern 1.5mu\overline{\mkern-3.5mu Z \mkern-.5mu}\mkern 1.5mu}}^2(M) $ is a direct summand of $M$ and ${\mkern 1.5mu\overline{\mkern-3.5mu Z \mkern-.5mu}\mkern 1.5mu}^2(M)$ is a quasi-dual Baer module. It is also shown that any direct summand of a quasi-t-dual Baer module inherits the property. The last part of the paper is devoted to the comparison of the notions of quasi-dual Baer modules and quasi-t-dual Baer modules. Also, right quasi-t-dual Baer rings are investigated.
Let $R$ be a ring and let $M$ be an $R$-module with $S=\rm{End}_R(M)$. Consider the preradical ${\mkern 1.5mu\overline{\mkern-3.5mu Z \mkern-.5mu}\mkern 1.5mu}$ for the category of right $R$-modules Mod-$R$ introduced by Y. Talebi and N. Vanaja in 2002 and defined by ${\mkern 1.5mu\overline{\mkern-3.5mu Z \mkern-.5mu}\mkern 1.5mu}(M) = \bigcap \{U\leq M\colon M/U$ is small in its injective hull$\}$. The module $M$ is called quasi-t-dual Baer if $\sum_{\varphi \in \mathfrak{I}} \varphi({{\mkern 1.5mu\overline{\mkern-3.5mu Z \mkern-.5mu}\mkern 1.5mu}}^2(M))$ is a direct summand of $M$ for every two-sided ideal $\mathfrak{I}$ of $S$, where ${{\mkern 1.5mu\overline{\mkern-3.5mu Z \mkern-.5mu}\mkern 1.5mu}}^2(M) = {{\mkern 1.5mu\overline{\mkern-3.5mu Z \mkern-.5mu}\mkern 1.5mu}} ({{\mkern 1.5mu\overline{\mkern-3.5mu Z \mkern-.5mu}\mkern 1.5mu}}(M))$. In this paper, we show that $M$ is quasi-t-dual Baer if and only if ${{\mkern 1.5mu\overline{\mkern-3.5mu Z \mkern-.5mu}\mkern 1.5mu}}^2(M) $ is a direct summand of $M$ and ${\mkern 1.5mu\overline{\mkern-3.5mu Z \mkern-.5mu}\mkern 1.5mu}^2(M)$ is a quasi-dual Baer module. It is also shown that any direct summand of a quasi-t-dual Baer module inherits the property. The last part of the paper is devoted to the comparison of the notions of quasi-dual Baer modules and quasi-t-dual Baer modules. Also, right quasi-t-dual Baer rings are investigated.
DOI : 10.14712/1213-7243.2024.008
Classification : 16D10, 16D80
Keywords: fully invariant submodule; quasi-dual Baer module; quasi-dual Baer ring; quasi-t-dual Baer module; quasi-t-dual Baer ring
@article{10_14712_1213_7243_2024_008,
     author = {Tribak, Rachid and Talebi, Yahya and Hosseinpour, Mehrab},
     title = {Some results on quasi-t-dual {Baer} modules},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {411--427},
     year = {2023},
     volume = {64},
     number = {4},
     doi = {10.14712/1213-7243.2024.008},
     mrnumber = {4813794},
     zbl = {07953690},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2024.008/}
}
TY  - JOUR
AU  - Tribak, Rachid
AU  - Talebi, Yahya
AU  - Hosseinpour, Mehrab
TI  - Some results on quasi-t-dual Baer modules
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2023
SP  - 411
EP  - 427
VL  - 64
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2024.008/
DO  - 10.14712/1213-7243.2024.008
LA  - en
ID  - 10_14712_1213_7243_2024_008
ER  - 
%0 Journal Article
%A Tribak, Rachid
%A Talebi, Yahya
%A Hosseinpour, Mehrab
%T Some results on quasi-t-dual Baer modules
%J Commentationes Mathematicae Universitatis Carolinae
%D 2023
%P 411-427
%V 64
%N 4
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2024.008/
%R 10.14712/1213-7243.2024.008
%G en
%F 10_14712_1213_7243_2024_008
Tribak, Rachid; Talebi, Yahya; Hosseinpour, Mehrab. Some results on quasi-t-dual Baer modules. Commentationes Mathematicae Universitatis Carolinae, Tome 64 (2023) no. 4, pp. 411-427. doi: 10.14712/1213-7243.2024.008

Cité par Sources :