Almost demi Dunford--Pettis operators on Banach lattices
Commentationes Mathematicae Universitatis Carolinae, Tome 64 (2023) no. 4, pp. 429-438
We introduce new concept of almost demi Dunford--Pettis operators. Let $E$ be a Banach lattice. An operator $T$ from $E$ into $E$ is said to be almost demi Dunford--Pettis if, for every sequence $\{x_{n}\}$ in $E_{+}$ such that $x_{n}\rightarrow 0$ in $\sigma(E,E')$ and $\|x_{n}-Tx_{n}\|\rightarrow 0$ as $n\rightarrow \infty$, we have $\|x_{n}\|\rightarrow 0$ as $n\rightarrow \infty$. In addition, we study some properties of this class of operators and its relationships with others known operators.
We introduce new concept of almost demi Dunford--Pettis operators. Let $E$ be a Banach lattice. An operator $T$ from $E$ into $E$ is said to be almost demi Dunford--Pettis if, for every sequence $\{x_{n}\}$ in $E_{+}$ such that $x_{n}\rightarrow 0$ in $\sigma(E,E')$ and $\|x_{n}-Tx_{n}\|\rightarrow 0$ as $n\rightarrow \infty$, we have $\|x_{n}\|\rightarrow 0$ as $n\rightarrow \infty$. In addition, we study some properties of this class of operators and its relationships with others known operators.
DOI :
10.14712/1213-7243.2024.007
Classification :
46A40, 46B40, 46B42
Keywords: almost demi Dunford--Pettis operator; Banach lattice; positive Schur property
Keywords: almost demi Dunford--Pettis operator; Banach lattice; positive Schur property
@article{10_14712_1213_7243_2024_007,
author = {Benkhaled, Hedi},
title = {Almost demi {Dunford--Pettis} operators on {Banach} lattices},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {429--438},
year = {2023},
volume = {64},
number = {4},
doi = {10.14712/1213-7243.2024.007},
mrnumber = {4813795},
zbl = {07953691},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2024.007/}
}
TY - JOUR AU - Benkhaled, Hedi TI - Almost demi Dunford--Pettis operators on Banach lattices JO - Commentationes Mathematicae Universitatis Carolinae PY - 2023 SP - 429 EP - 438 VL - 64 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2024.007/ DO - 10.14712/1213-7243.2024.007 LA - en ID - 10_14712_1213_7243_2024_007 ER -
%0 Journal Article %A Benkhaled, Hedi %T Almost demi Dunford--Pettis operators on Banach lattices %J Commentationes Mathematicae Universitatis Carolinae %D 2023 %P 429-438 %V 64 %N 4 %U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2024.007/ %R 10.14712/1213-7243.2024.007 %G en %F 10_14712_1213_7243_2024_007
Benkhaled, Hedi. Almost demi Dunford--Pettis operators on Banach lattices. Commentationes Mathematicae Universitatis Carolinae, Tome 64 (2023) no. 4, pp. 429-438. doi: 10.14712/1213-7243.2024.007
Cité par Sources :