The positive cone of a Banach lattice. Coincidence of topologies and metrizability
Commentationes Mathematicae Universitatis Carolinae, Tome 64 (2023) no. 4, pp. 475-483
Let $X$ be a Banach lattice, and denote by $X_+$ its positive cone. The weak topology on $X_+$ is metrizable if and only if it coincides with the strong topology if and only if $X$ is Banach-lattice isomorphic to $l^1(\Gamma)$ for a set $\Gamma$. The weak$^*$ topology on $X_+^*$ is metrizable if and only if $X$ is Banach-lattice isomorphic to a $C(K)$-space, where $K$ is a metrizable compact space.
Let $X$ be a Banach lattice, and denote by $X_+$ its positive cone. The weak topology on $X_+$ is metrizable if and only if it coincides with the strong topology if and only if $X$ is Banach-lattice isomorphic to $l^1(\Gamma)$ for a set $\Gamma$. The weak$^*$ topology on $X_+^*$ is metrizable if and only if $X$ is Banach-lattice isomorphic to a $C(K)$-space, where $K$ is a metrizable compact space.
DOI :
10.14712/1213-7243.2024.004
Classification :
46B42, 46E05, 54E35
Keywords: normed lattice; Banach lattice; positive cone; AM-space; AL-space; Banach lattice $C(K)$; Banach lattice $l^1(\Gamma)$; strong topology; weak topology; weak$^*$ topology; coincidence of topologies; metrizability; nonatomic measure
Keywords: normed lattice; Banach lattice; positive cone; AM-space; AL-space; Banach lattice $C(K)$; Banach lattice $l^1(\Gamma)$; strong topology; weak topology; weak$^*$ topology; coincidence of topologies; metrizability; nonatomic measure
@article{10_14712_1213_7243_2024_004,
author = {Lipecki, Zbigniew},
title = {The positive cone of a {Banach} lattice. {Coincidence} of topologies and metrizability},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {475--483},
year = {2023},
volume = {64},
number = {4},
doi = {10.14712/1213-7243.2024.004},
mrnumber = {4813798},
zbl = {07953694},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2024.004/}
}
TY - JOUR AU - Lipecki, Zbigniew TI - The positive cone of a Banach lattice. Coincidence of topologies and metrizability JO - Commentationes Mathematicae Universitatis Carolinae PY - 2023 SP - 475 EP - 483 VL - 64 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2024.004/ DO - 10.14712/1213-7243.2024.004 LA - en ID - 10_14712_1213_7243_2024_004 ER -
%0 Journal Article %A Lipecki, Zbigniew %T The positive cone of a Banach lattice. Coincidence of topologies and metrizability %J Commentationes Mathematicae Universitatis Carolinae %D 2023 %P 475-483 %V 64 %N 4 %U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2024.004/ %R 10.14712/1213-7243.2024.004 %G en %F 10_14712_1213_7243_2024_004
Lipecki, Zbigniew. The positive cone of a Banach lattice. Coincidence of topologies and metrizability. Commentationes Mathematicae Universitatis Carolinae, Tome 64 (2023) no. 4, pp. 475-483. doi: 10.14712/1213-7243.2024.004
Cité par Sources :