The positive cone of a Banach lattice. Coincidence of topologies and metrizability
Commentationes Mathematicae Universitatis Carolinae, Tome 64 (2023) no. 4, pp. 475-483
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $X$ be a Banach lattice, and denote by $X_+$ its positive cone. The weak topology on $X_+$ is metrizable if and only if it coincides with the strong topology if and only if $X$ is Banach-lattice isomorphic to $l^1(\Gamma)$ for a set $\Gamma$. The weak$^*$ topology on $X_+^*$ is metrizable if and only if $X$ is Banach-lattice isomorphic to a $C(K)$-space, where $K$ is a metrizable compact space.
Let $X$ be a Banach lattice, and denote by $X_+$ its positive cone. The weak topology on $X_+$ is metrizable if and only if it coincides with the strong topology if and only if $X$ is Banach-lattice isomorphic to $l^1(\Gamma)$ for a set $\Gamma$. The weak$^*$ topology on $X_+^*$ is metrizable if and only if $X$ is Banach-lattice isomorphic to a $C(K)$-space, where $K$ is a metrizable compact space.
DOI : 10.14712/1213-7243.2024.004
Classification : 46B42, 46E05, 54E35
Keywords: normed lattice; Banach lattice; positive cone; AM-space; AL-space; Banach lattice $C(K)$; Banach lattice $l^1(\Gamma)$; strong topology; weak topology; weak$^*$ topology; coincidence of topologies; metrizability; nonatomic measure
@article{10_14712_1213_7243_2024_004,
     author = {Lipecki, Zbigniew},
     title = {The positive cone of a {Banach} lattice. {Coincidence} of topologies and metrizability},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {475--483},
     year = {2023},
     volume = {64},
     number = {4},
     doi = {10.14712/1213-7243.2024.004},
     mrnumber = {4813798},
     zbl = {07953694},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2024.004/}
}
TY  - JOUR
AU  - Lipecki, Zbigniew
TI  - The positive cone of a Banach lattice. Coincidence of topologies and metrizability
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2023
SP  - 475
EP  - 483
VL  - 64
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2024.004/
DO  - 10.14712/1213-7243.2024.004
LA  - en
ID  - 10_14712_1213_7243_2024_004
ER  - 
%0 Journal Article
%A Lipecki, Zbigniew
%T The positive cone of a Banach lattice. Coincidence of topologies and metrizability
%J Commentationes Mathematicae Universitatis Carolinae
%D 2023
%P 475-483
%V 64
%N 4
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2024.004/
%R 10.14712/1213-7243.2024.004
%G en
%F 10_14712_1213_7243_2024_004
Lipecki, Zbigniew. The positive cone of a Banach lattice. Coincidence of topologies and metrizability. Commentationes Mathematicae Universitatis Carolinae, Tome 64 (2023) no. 4, pp. 475-483. doi: 10.14712/1213-7243.2024.004

Cité par Sources :