Sequentially Right Banach spaces of order $p$
Commentationes Mathematicae Universitatis Carolinae, Tome 61 (2020) no. 1, pp. 51-67
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We introduce and study two new classes of Banach spaces, the so-called sequentially Right Banach spaces of order $p$, and those defined by the dual property, the sequentially Right$^*$ Banach spaces of order $p$ for $1\leq p\leq\infty$. These classes of Banach spaces are characterized by the notions of $L_p$-limited sets in the corresponding dual space and $R^*_p$ subsets of the involved Banach space, respectively. In particular, we investigate whether the injective tensor product of a Banach space $X$ and a reflexive Banach space $Y$ has the sequentially Right property of order $p$ when $X$ enjoys this property.
We introduce and study two new classes of Banach spaces, the so-called sequentially Right Banach spaces of order $p$, and those defined by the dual property, the sequentially Right$^*$ Banach spaces of order $p$ for $1\leq p\leq\infty$. These classes of Banach spaces are characterized by the notions of $L_p$-limited sets in the corresponding dual space and $R^*_p$ subsets of the involved Banach space, respectively. In particular, we investigate whether the injective tensor product of a Banach space $X$ and a reflexive Banach space $Y$ has the sequentially Right property of order $p$ when $X$ enjoys this property.
DOI :
10.14712/1213-7243.2020.011
Classification :
46B20, 46B25, 47L05
Keywords: Right topology; sequentially Right Banach space; pseudo weakly compact operator; Pełczyński's property (V) of order $p$; limited $p$-converging operator; $p$-Gelfand--Phillips property; reciprocal Dunford--Pettis property of order $p$
Keywords: Right topology; sequentially Right Banach space; pseudo weakly compact operator; Pełczyński's property (V) of order $p$; limited $p$-converging operator; $p$-Gelfand--Phillips property; reciprocal Dunford--Pettis property of order $p$
@article{10_14712_1213_7243_2020_011,
author = {Dehghani, Mahdi and Dehghani, Mohammad B. and Moshtaghioun, Mohammad S.},
title = {Sequentially {Right} {Banach} spaces of order $p$},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {51--67},
year = {2020},
volume = {61},
number = {1},
doi = {10.14712/1213-7243.2020.011},
mrnumber = {4093429},
zbl = {07217158},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2020.011/}
}
TY - JOUR AU - Dehghani, Mahdi AU - Dehghani, Mohammad B. AU - Moshtaghioun, Mohammad S. TI - Sequentially Right Banach spaces of order $p$ JO - Commentationes Mathematicae Universitatis Carolinae PY - 2020 SP - 51 EP - 67 VL - 61 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2020.011/ DO - 10.14712/1213-7243.2020.011 LA - en ID - 10_14712_1213_7243_2020_011 ER -
%0 Journal Article %A Dehghani, Mahdi %A Dehghani, Mohammad B. %A Moshtaghioun, Mohammad S. %T Sequentially Right Banach spaces of order $p$ %J Commentationes Mathematicae Universitatis Carolinae %D 2020 %P 51-67 %V 61 %N 1 %U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2020.011/ %R 10.14712/1213-7243.2020.011 %G en %F 10_14712_1213_7243_2020_011
Dehghani, Mahdi; Dehghani, Mohammad B.; Moshtaghioun, Mohammad S. Sequentially Right Banach spaces of order $p$. Commentationes Mathematicae Universitatis Carolinae, Tome 61 (2020) no. 1, pp. 51-67. doi: 10.14712/1213-7243.2020.011
Cité par Sources :