The $\sigma$-property in $C(X)$
Commentationes Mathematicae Universitatis Carolinae, Tome 57 (2016) no. 2, pp. 231-239 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The $\sigma$-property of a Riesz space (real vector lattice) $B$ is: For each sequence $\{b_{n}\}$ of positive elements of $B$, there is a sequence $\{\lambda_{n}\}$ of positive reals, and $b\in B$, with $\lambda_{n}b_{n}\leq b$ for each $n$. This condition is involved in studies in Riesz spaces of abstract Egoroff-type theorems, and of the countable lifting property. Here, we examine when ``$\sigma$'' obtains for a Riesz space of continuous real-valued functions $C(X)$. A basic result is: For discrete $X$, $C(X)$ has $\sigma$ iff the cardinal $|X| \mathfrak{b}$, Rothberger's bounding number. Consequences and generalizations use the Lindelöf number $L(X)$: For a $P$-space $X$, if $L(X)\leq \mathfrak{b}$, then $C(X)$ has $\sigma$. For paracompact $X$, if $C(X)$ has $\sigma$, then $L(X)\leq \mathfrak{b}$, and conversely if $X$ is also locally compact. For metrizable $X$, if $C(X)$ has $\sigma$, then $X$ \textit{is} locally compact.
The $\sigma$-property of a Riesz space (real vector lattice) $B$ is: For each sequence $\{b_{n}\}$ of positive elements of $B$, there is a sequence $\{\lambda_{n}\}$ of positive reals, and $b\in B$, with $\lambda_{n}b_{n}\leq b$ for each $n$. This condition is involved in studies in Riesz spaces of abstract Egoroff-type theorems, and of the countable lifting property. Here, we examine when ``$\sigma$'' obtains for a Riesz space of continuous real-valued functions $C(X)$. A basic result is: For discrete $X$, $C(X)$ has $\sigma$ iff the cardinal $|X| \mathfrak{b}$, Rothberger's bounding number. Consequences and generalizations use the Lindelöf number $L(X)$: For a $P$-space $X$, if $L(X)\leq \mathfrak{b}$, then $C(X)$ has $\sigma$. For paracompact $X$, if $C(X)$ has $\sigma$, then $L(X)\leq \mathfrak{b}$, and conversely if $X$ is also locally compact. For metrizable $X$, if $C(X)$ has $\sigma$, then $X$ \textit{is} locally compact.
DOI : 10.14712/1213-7243.2015.162
Classification : 03E17, 06F20, 46A40, 54A25, 54C30, 54D20, 54D45, 54G10
Keywords: Riesz space; $\sigma$-property; bounding number; $P$-space; paracompact; locally compact
@article{10_14712_1213_7243_2015_162,
     author = {Hager, Anthony W.},
     title = {The $\sigma$-property in $C(X)$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {231--239},
     year = {2016},
     volume = {57},
     number = {2},
     doi = {10.14712/1213-7243.2015.162},
     mrnumber = {3513446},
     zbl = {06604503},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.162/}
}
TY  - JOUR
AU  - Hager, Anthony W.
TI  - The $\sigma$-property in $C(X)$
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2016
SP  - 231
EP  - 239
VL  - 57
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.162/
DO  - 10.14712/1213-7243.2015.162
LA  - en
ID  - 10_14712_1213_7243_2015_162
ER  - 
%0 Journal Article
%A Hager, Anthony W.
%T The $\sigma$-property in $C(X)$
%J Commentationes Mathematicae Universitatis Carolinae
%D 2016
%P 231-239
%V 57
%N 2
%U http://geodesic.mathdoc.fr/articles/10.14712/1213-7243.2015.162/
%R 10.14712/1213-7243.2015.162
%G en
%F 10_14712_1213_7243_2015_162
Hager, Anthony W. The $\sigma$-property in $C(X)$. Commentationes Mathematicae Universitatis Carolinae, Tome 57 (2016) no. 2, pp. 231-239. doi: 10.14712/1213-7243.2015.162

Cité par Sources :