Voir la notice de l'article provenant de la source Numdam
In this paper we study the almost sure conditional central limit theorem in its functional form for a class of random variables satisfying a projective criterion. Applications to strongly mixing processes and nonirreducible Markov chains are given. The proofs are based on the normal approximation of double indexed martingale-like sequences, an approach which has interest in itself.
Dans cet article, nous étudions le théorème central limite conditionnel presque sûr, ainsi que sa forme fonctionnelle, pour des suites stationnaires de variables aléatoires réelles satisfaisant une condition de type projectif. Nous donnons des applications de ces résultats aux processus fortement mélangeants ainsi qu'à des chaînes de Markov nonirréductibles. Les preuves sont essentiellement basées sur une approximation normale de suites doublement indexées de variables aléatoires de type martingale.
@article{AIHPB_2014__50_3_872_0, author = {Dedecker, J\'er\^ome and Merlev\`ede, Florence and Peligrad, Magda}, title = {A quenched weak invariance principle}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {872--898}, publisher = {Gauthier-Villars}, volume = {50}, number = {3}, year = {2014}, doi = {10.1214/13-AIHP553}, mrnumber = {3224292}, zbl = {1304.60031}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1214/13-AIHP553/} }
TY - JOUR AU - Dedecker, Jérôme AU - Merlevède, Florence AU - Peligrad, Magda TI - A quenched weak invariance principle JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2014 SP - 872 EP - 898 VL - 50 IS - 3 PB - Gauthier-Villars UR - http://geodesic.mathdoc.fr/articles/10.1214/13-AIHP553/ DO - 10.1214/13-AIHP553 LA - en ID - AIHPB_2014__50_3_872_0 ER -
%0 Journal Article %A Dedecker, Jérôme %A Merlevède, Florence %A Peligrad, Magda %T A quenched weak invariance principle %J Annales de l'I.H.P. Probabilités et statistiques %D 2014 %P 872-898 %V 50 %N 3 %I Gauthier-Villars %U http://geodesic.mathdoc.fr/articles/10.1214/13-AIHP553/ %R 10.1214/13-AIHP553 %G en %F AIHPB_2014__50_3_872_0
Dedecker, Jérôme; Merlevède, Florence; Peligrad, Magda. A quenched weak invariance principle. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 3, pp. 872-898. doi: 10.1214/13-AIHP553
Cité par Sources :