Voir la notice de l'article provenant de la source Numdam
In this paper, we study the size of the giant component in the random geometric graph of nodes independently distributed each according to a certain density in satisfying . If for some positive constants , and as , we show that the giant component of contains at least nodes with probability at least for all and for some positive constant . We also obtain estimates on the diameter and number of the non-giant components of .
Dans cet article nous étudions la composante principale dans le graphe géométrique aléatoire avec nœuds indépendants, chacun étant distribué selon une densité dans telle que . Si pour des constantes positives , et quand , nous montrons que la composante principale de contient au moins nœuds avec probabilité minorée par pour tout et pour une constante positive . Nous obtenons aussi des estimations sur les diamètres et sur le nombre des plus petites composantes de .
@article{AIHPB_2013__49_4_1130_0, author = {Ganesan, Ghurumuruhan}, title = {Size of the giant component in a random geometric graph}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1130--1140}, publisher = {Gauthier-Villars}, volume = {49}, number = {4}, year = {2013}, doi = {10.1214/12-AIHP498}, mrnumber = {3127916}, zbl = {1283.60017}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1214/12-AIHP498/} }
TY - JOUR AU - Ganesan, Ghurumuruhan TI - Size of the giant component in a random geometric graph JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2013 SP - 1130 EP - 1140 VL - 49 IS - 4 PB - Gauthier-Villars UR - http://geodesic.mathdoc.fr/articles/10.1214/12-AIHP498/ DO - 10.1214/12-AIHP498 LA - en ID - AIHPB_2013__49_4_1130_0 ER -
%0 Journal Article %A Ganesan, Ghurumuruhan %T Size of the giant component in a random geometric graph %J Annales de l'I.H.P. Probabilités et statistiques %D 2013 %P 1130-1140 %V 49 %N 4 %I Gauthier-Villars %U http://geodesic.mathdoc.fr/articles/10.1214/12-AIHP498/ %R 10.1214/12-AIHP498 %G en %F AIHPB_2013__49_4_1130_0
Ganesan, Ghurumuruhan. Size of the giant component in a random geometric graph. Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) no. 4, pp. 1130-1140. doi : 10.1214/12-AIHP498. http://geodesic.mathdoc.fr/articles/10.1214/12-AIHP498/
[1] Percolation. Cambridge Univ. Press, New York, 2006. | MR
and .[2] Closing gap in the capacity of wireless networks via percolation theory. IEEE Trans. Inform. Theory 53 (2007) 1009-1018. | MR
, , and .[3] Percolation, 2nd edition. Grundlehren der Mathematischen Wissenschaften 321. Springer, Berlin, 1999. | MR
.[4] Critical power for asymptotic connectivity in wireless networks. In Stochastic Analysis, Control, Optimization and Applications 547-566. Systems Control Found. Appl. Birkhäuser, Boston, MA, 1999. | MR
and .[5] The bin-covering technique for thresholding random geometric graph properties. In Proc. SODA 989-998. ACM, New York, 2005. | MR
and .[6] Random Geometric Graphs. Oxford Studies in Probability 5. Oxford Univ. Press, Oxford, 2003. | MR
.Cité par Sources :