The scaling limits of a heavy tailed Markov renewal process
Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) no. 2, pp. 483-505

Voir la notice de l'article provenant de la source Numdam

In this paper we consider heavy tailed Markov renewal processes and we prove that, suitably renormalised, they converge in law towards the α-stable regenerative set. We then apply these results to the strip wetting model which is a random walk S constrained above a wall and rewarded or penalized when it hits the strip [0,)×[0,a] where a is a given positive number. The convergence result that we establish allows to characterize the scaling limit of this process at criticality.

Dans cet article, nous considérons des processus de renouvellement markovien à queues lourdes. Nous montrons que, convenablement renormalisés, ils convergent vers l’ensemble régénératif d’indice α. Nous appliquons ces résultats à un modèle d’accrochage dans une bande. Dans ce modèle, une marche aléatoire S, contrainte à rester au-dessus d’un mur, est récompensée ou pénalisée lorsqu’est atteinte la bande [0,)×[0,a]a est un réel strictement positif. La convergence que nous établissons permet de caractériser les limites d’échelle de ce modèle au point critique.

DOI : 10.1214/11-AIHP456
Classification : 60F77, 60K15, 60K20, 60K05, 82B27
Keywords: Heavy tailed Markov renewals processes, scaling limits, fluctuation theory for random walks, regenerative sets
@article{AIHPB_2013__49_2_483_0,
     author = {Sohier, Julien},
     title = {The scaling limits of a heavy tailed {Markov} renewal process},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {483--505},
     publisher = {Gauthier-Villars},
     volume = {49},
     number = {2},
     year = {2013},
     doi = {10.1214/11-AIHP456},
     mrnumber = {3088378},
     zbl = {1271.60095},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1214/11-AIHP456/}
}
TY  - JOUR
AU  - Sohier, Julien
TI  - The scaling limits of a heavy tailed Markov renewal process
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2013
SP  - 483
EP  - 505
VL  - 49
IS  - 2
PB  - Gauthier-Villars
UR  - http://geodesic.mathdoc.fr/articles/10.1214/11-AIHP456/
DO  - 10.1214/11-AIHP456
LA  - en
ID  - AIHPB_2013__49_2_483_0
ER  - 
%0 Journal Article
%A Sohier, Julien
%T The scaling limits of a heavy tailed Markov renewal process
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2013
%P 483-505
%V 49
%N 2
%I Gauthier-Villars
%U http://geodesic.mathdoc.fr/articles/10.1214/11-AIHP456/
%R 10.1214/11-AIHP456
%G en
%F AIHPB_2013__49_2_483_0
Sohier, Julien. The scaling limits of a heavy tailed Markov renewal process. Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) no. 2, pp. 483-505. doi: 10.1214/11-AIHP456

Cité par Sources :