Small and large time stability of the time taken for a Lévy process to cross curved boundaries
Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) no. 1, pp. 208-235

Voir la notice de l'article provenant de la source Numdam

This paper is concerned with the small time behaviour of a Lévy process X. In particular, we investigate the stabilities of the times, T ¯ b (r) and T b * (r), at which X, started with X 0 =0, first leaves the space-time regions {(t,y) 2 :yrt b ,t0} (one-sided exit), or {(t,y) 2 :|y|rt b ,t0} (two-sided exit), 0b<1, as r0. Thus essentially we determine whether or not these passage times behave like deterministic functions in the sense of different modes of convergence; specifically convergence in probability, almost surely and in L p . In many instances these are seen to be equivalent to relative stability of the process X itself. The analogous large time problem is also discussed.

Ce papier traite du comportement en temps court d’un processus de Lévy X. En particulier, nous étudions la stabilité des temps T ¯ b (r) et T b * (r) auxquels X, partant de X 0 =0, quitte pour la première fois les domaines {(t,y) 2 :yrt b ,t0} (sortie unilatérale), ou {(t,y) 2 :|y|rt b ,t0} (sortie bilatérale), 0b<1, quand r0. Nous déterminons si ces temps de passage se comportent ou non comme des fonctions déterministes selon différents modes de convergence : en probabilité, presque sûrement et dans L p . Dans de nombreux cas, ceci est équivalent à la stabilité du processus X. Le problème analogue à temps grand est aussi discuté.

DOI : 10.1214/11-AIHP449
Classification : 60G51, 60F15, 60F25, 60K05
Keywords: Lévy process, passage times across power law boundaries, relative stability, overshoot, random walks
@article{AIHPB_2013__49_1_208_0,
     author = {Griffin, Philip S. and Maller, Ross A.},
     title = {Small and large time stability of the time taken for a {L\'evy} process to cross curved boundaries},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {208--235},
     publisher = {Gauthier-Villars},
     volume = {49},
     number = {1},
     year = {2013},
     doi = {10.1214/11-AIHP449},
     mrnumber = {3060154},
     zbl = {1267.60053},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1214/11-AIHP449/}
}
TY  - JOUR
AU  - Griffin, Philip S.
AU  - Maller, Ross A.
TI  - Small and large time stability of the time taken for a Lévy process to cross curved boundaries
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2013
SP  - 208
EP  - 235
VL  - 49
IS  - 1
PB  - Gauthier-Villars
UR  - http://geodesic.mathdoc.fr/articles/10.1214/11-AIHP449/
DO  - 10.1214/11-AIHP449
LA  - en
ID  - AIHPB_2013__49_1_208_0
ER  - 
%0 Journal Article
%A Griffin, Philip S.
%A Maller, Ross A.
%T Small and large time stability of the time taken for a Lévy process to cross curved boundaries
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2013
%P 208-235
%V 49
%N 1
%I Gauthier-Villars
%U http://geodesic.mathdoc.fr/articles/10.1214/11-AIHP449/
%R 10.1214/11-AIHP449
%G en
%F AIHPB_2013__49_1_208_0
Griffin, Philip S.; Maller, Ross A. Small and large time stability of the time taken for a Lévy process to cross curved boundaries. Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) no. 1, pp. 208-235. doi: 10.1214/11-AIHP449

Cité par Sources :