Voir la notice de l'article provenant de la source Numdam
Let H0 denote the class of all real valued i.i.d. processes and H1 all other ergodic real valued stationary processes. In spite of the fact that these classes are not countably tight we give a strongly consistent sequential test for distinguishing between them.
Soit H0 la classe de tous les processus indépendants et équidistribués à valeurs réelles, et H1 la classe complémentaire dans l'ensemble des processus ergodiques. Nous donnons un test séquentiel fortement consistant pour les distinguer.
@article{AIHPB_2011__47_4_1219_0, author = {Morvai, Guszt\'av and Weiss, Benjamin}, title = {Testing stationary processes for independence}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1219--1225}, publisher = {Gauthier-Villars}, volume = {47}, number = {4}, year = {2011}, doi = {10.1214/11-AIHP426}, zbl = {1271.62196}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1214/11-AIHP426/} }
TY - JOUR AU - Morvai, Gusztáv AU - Weiss, Benjamin TI - Testing stationary processes for independence JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2011 SP - 1219 EP - 1225 VL - 47 IS - 4 PB - Gauthier-Villars UR - http://geodesic.mathdoc.fr/articles/10.1214/11-AIHP426/ DO - 10.1214/11-AIHP426 LA - en ID - AIHPB_2011__47_4_1219_0 ER -
%0 Journal Article %A Morvai, Gusztáv %A Weiss, Benjamin %T Testing stationary processes for independence %J Annales de l'I.H.P. Probabilités et statistiques %D 2011 %P 1219-1225 %V 47 %N 4 %I Gauthier-Villars %U http://geodesic.mathdoc.fr/articles/10.1214/11-AIHP426/ %R 10.1214/11-AIHP426 %G en %F AIHPB_2011__47_4_1219_0
Morvai, Gusztáv; Weiss, Benjamin. Testing stationary processes for independence. Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011) no. 4, pp. 1219-1225. doi: 10.1214/11-AIHP426
Cité par Sources :