Voir la notice de l'article provenant de la source Numdam
We consider a planar Poisson process and its associated Voronoi map. We show that there is a proper coloring with 6 colors of the map which is a deterministic isometry-equivariant function of the Poisson process. As part of the proof we show that the 6-core of the corresponding Delaunay triangulation is empty. Generalizations, extensions and some open questions are discussed.
Nous étudions un processus de Poisson planaire et sa partition de Voronoi associée. Nous montrons qu'il existe une coloration à six couleurs de cette partition satisfaisant les deux propriétés suivantes : la coloration est une fonction déterministe du processus de Poisson. Par ailleurs, elle commute avec les isométries du plan. Une partie de la preuve consiste à montrer que le “6-core” de la triangulation de Delaunay associée est vide. Des généralisations, extensions et problèmes ouverts sont discutés.
@article{AIHPB_2012__48_2_327_0, author = {Angel, Omer and Benjamini, Itai and Gurel-Gurevich, Ori and Meyerovitch, Tom and Peled, Ron}, title = {Stationary map coloring}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {327--342}, publisher = {Gauthier-Villars}, volume = {48}, number = {2}, year = {2012}, doi = {10.1214/10-AIHP399}, mrnumber = {2954257}, zbl = {1258.60015}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1214/10-AIHP399/} }
TY - JOUR AU - Angel, Omer AU - Benjamini, Itai AU - Gurel-Gurevich, Ori AU - Meyerovitch, Tom AU - Peled, Ron TI - Stationary map coloring JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2012 SP - 327 EP - 342 VL - 48 IS - 2 PB - Gauthier-Villars UR - http://geodesic.mathdoc.fr/articles/10.1214/10-AIHP399/ DO - 10.1214/10-AIHP399 LA - en ID - AIHPB_2012__48_2_327_0 ER -
%0 Journal Article %A Angel, Omer %A Benjamini, Itai %A Gurel-Gurevich, Ori %A Meyerovitch, Tom %A Peled, Ron %T Stationary map coloring %J Annales de l'I.H.P. Probabilités et statistiques %D 2012 %P 327-342 %V 48 %N 2 %I Gauthier-Villars %U http://geodesic.mathdoc.fr/articles/10.1214/10-AIHP399/ %R 10.1214/10-AIHP399 %G en %F AIHPB_2012__48_2_327_0
Angel, Omer; Benjamini, Itai; Gurel-Gurevich, Ori; Meyerovitch, Tom; Peled, Ron. Stationary map coloring. Annales de l'I.H.P. Probabilités et statistiques, Tome 48 (2012) no. 2, pp. 327-342. doi : 10.1214/10-AIHP399. http://geodesic.mathdoc.fr/articles/10.1214/10-AIHP399/
[1] Multi-color matching. Unpublished manuscript.
, and .[2] Deterministic thinning of finite Poisson processes. Proc. Amer. Math. Soc. 139 (2011) 707-720. | Zbl | MR
, and .[3] Poisson thinning by monotone factors. Electron. Comm. Probab. 10 (2005) 60-69 (electronic). | Zbl | MR | EuDML
.[4] Finitary coloring. Unpublished manuscript.
, , and .[5] The critical probability for random Voronoi percolation in the plane is 1/2. Probab. Theory Related Fields 136 (2006) 417-468. | Zbl | MR
and .[6] Phase transitions in gravitational allocation. Preprint. Available at http://arxiv.org/abs/0903.4647. | Zbl | MR
, , and .[7] Gravitational allocation to Poisson points. Ann. of Math. (2) 172 (2010) 617-671. | Zbl | MR
, , and .[8] Descending chains, the lilypond model, and mutual-nearest-neighbour matching. Adv. in Appl. Probab. 37 (2005) 604-628. | Zbl | MR
and .[9] Generating stationary random graphs on ℤ with prescribed independent, identically distributed degrees. Adv. in Appl. Probab. 38 (2006) 287-298. | Zbl | MR
and .[10] A convex partition of R3 with applications to Crum's problem and Knuth's post-office problem. Utilitas Math. 12 (1977) 193-199. | Zbl
and .[11] A stable marriage of Poisson and Lebesgue. Ann. Probab. 34 (2006) 1241-1272. | Zbl
, and .[12] Tail bounds for the stable marriage of Poisson and Lebesgue. Canad. J. Math. 61 (2009) 1279-1299. | Zbl
, and .[13] Poisson splitting by factors. Ann. Probab. To appear. Available at http://arxiv.org/abs/0908.3409. | Zbl
, and .[14] Poisson matching. Ann. Inst. H. Poincaré Probab. Statist. 45 (2009) 266-287. | Zbl | MR | mathdoc-id
, , and .[15] Trees and matchings from point processes. Electron. Comm. Probab. 8 (2003) 17-27 (electronic). | Zbl | MR
and .[16] Extra heads and invariant allocations. Ann. Probab. 33 (2005) 31-52. | Zbl | MR
and .[17] Private communication, 2007.
.[18] Connected allocation to Poisson points in ℝ2. Electron. Comm. Probab. 12 (2007) 140-145 (electronic). | Zbl | MR
.[19] Set Theory: An Introduction to Independence Proofs. Studies in Logic and the Foundations of Mathematics 102. North-Holland, Amsterdam, 1980. | Zbl | MR
.[20] Domination by product measures. Ann. Probab. 25 (1997) 71-95. | Zbl | MR
, and .[21] Private communication, 2007.
.[22] Steps into computational geometry. Technical report, Coordinated Science Laboratory, Univ. Illinois, 1977.
.[23] Invariant colorings of random planar graphs. Preprint. Available at arXiv:0909.1091. | Zbl
.[24] Invariant matchings of exponential tail on coin flips in ℤd. Preprint. Available at arXiv:0909.1090.
.[25] The critical probability for Voronoi percolation. Master's thesis, Weizmann Institute of Science, 1996. Available at http://www.math.kent.edu/~zvavitch/.
.Cité par Sources :