Adaptive estimation of the conditional intensity of marker-dependent counting processes
Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011) no. 4, pp. 1171-1196

Voir la notice de l'article provenant de la source Numdam

We propose in this work an original estimator of the conditional intensity of a marker-dependent counting process, that is, a counting process with covariates. We use model selection methods and provide a nonasymptotic bound for the risk of our estimator on a compact set. We show that our estimator reaches automatically a convergence rate over a functional class with a given (unknown) anisotropic regularity. Then, we prove a lower bound which establishes that this rate is optimal. Lastly, we provide a short illustration of the way the estimator works in the context of conditional hazard estimation.

Dans ce travail, nous proposons un estimateur original de l'intensité conditionnelle d'un processus de comptage marqué, c'est-à-dire d'un processus de comptage dépendant de covariables. Nous utilisons une méthode de sélection de modèle et nous obtenons pour notre estimateur, une borne non asymptotique du risque quadratique sur un compact. Nous vérifions ensuite que l'estimateur atteint automatiquement une vitesse de convergence sur des classes fonctionnelles de régularité anisotropique fixée mais inconnue. Enfin, nous démontrons une borne inférieure qui garantit l'optimalité de la vitesse obtenue. Une brève illustration de la façon dont fonctionne l'estimateur dans le contexte de l'estimation du taux de risque instantané conditionnel est fournie pour conclure.

DOI : 10.1214/10-AIHP386
Classification : 62N02, 62G05
Keywords: marker-dependent counting process, conditional intensity, model selection, adaptive estimation, minimax and nonparametric methods, censored data, conditional hazard function
@article{AIHPB_2011__47_4_1171_0,
     author = {Comte, F. and Ga{\"\i}ffas, S. and Guilloux, A.},
     title = {Adaptive estimation of the conditional intensity of marker-dependent counting processes},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {1171--1196},
     publisher = {Gauthier-Villars},
     volume = {47},
     number = {4},
     year = {2011},
     doi = {10.1214/10-AIHP386},
     zbl = {1271.62222},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1214/10-AIHP386/}
}
TY  - JOUR
AU  - Comte, F.
AU  - Gaïffas, S.
AU  - Guilloux, A.
TI  - Adaptive estimation of the conditional intensity of marker-dependent counting processes
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2011
SP  - 1171
EP  - 1196
VL  - 47
IS  - 4
PB  - Gauthier-Villars
UR  - http://geodesic.mathdoc.fr/articles/10.1214/10-AIHP386/
DO  - 10.1214/10-AIHP386
LA  - en
ID  - AIHPB_2011__47_4_1171_0
ER  - 
%0 Journal Article
%A Comte, F.
%A Gaïffas, S.
%A Guilloux, A.
%T Adaptive estimation of the conditional intensity of marker-dependent counting processes
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2011
%P 1171-1196
%V 47
%N 4
%I Gauthier-Villars
%U http://geodesic.mathdoc.fr/articles/10.1214/10-AIHP386/
%R 10.1214/10-AIHP386
%G en
%F AIHPB_2011__47_4_1171_0
Comte, F.; Gaïffas, S.; Guilloux, A. Adaptive estimation of the conditional intensity of marker-dependent counting processes. Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011) no. 4, pp. 1171-1196. doi: 10.1214/10-AIHP386

Cité par Sources :