Voir la notice de l'article provenant de la source Numdam
The following question is due to Marc Yor: Let B be a brownian motion and St=t+Bt. Can we define an -predictable process H such that the resulting stochastic integral (H⋅S) is a brownian motion (without drift) in its own filtration, i.e. an -brownian motion? In this paper we show that by dropping the requirement of -predictability of H we can give a positive answer to this question. In other words, we are able to show that there is a weak solution to Yor's question. The original question, i.e., existence of a strong solution, remains open.
La question suivante a été posée par Marc Yor: Soit B un mouvement Brownien et St=t+Bt. Peut-on définir un processus H qui est -prévisible tel que l'intégrale stochastique (H⋅S) soit un mouvement Brownien (sans drift) pour sa propre filtration ? Dans cet article nous fournissons une réponse affirmative en relâchant la condition que H soit -prévisible. Autrement dit, nous montrons qu'il existe une solution faible pour cette question de Yor. La question originale (c'est à dire, l'existence d'une solution forte) reste ouverte.
@article{AIHPB_2011__47_2_498_0, author = {Prokaj, Vilmos and R\'asonyi, Mikl\'os and Schachermayer, Walter}, title = {Hiding a constant drift}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {498--514}, publisher = {Gauthier-Villars}, volume = {47}, number = {2}, year = {2011}, doi = {10.1214/10-AIHP363}, mrnumber = {2814420}, zbl = {1216.60048}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1214/10-AIHP363/} }
TY - JOUR AU - Prokaj, Vilmos AU - Rásonyi, Miklós AU - Schachermayer, Walter TI - Hiding a constant drift JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2011 SP - 498 EP - 514 VL - 47 IS - 2 PB - Gauthier-Villars UR - http://geodesic.mathdoc.fr/articles/10.1214/10-AIHP363/ DO - 10.1214/10-AIHP363 LA - en ID - AIHPB_2011__47_2_498_0 ER -
%0 Journal Article %A Prokaj, Vilmos %A Rásonyi, Miklós %A Schachermayer, Walter %T Hiding a constant drift %J Annales de l'I.H.P. Probabilités et statistiques %D 2011 %P 498-514 %V 47 %N 2 %I Gauthier-Villars %U http://geodesic.mathdoc.fr/articles/10.1214/10-AIHP363/ %R 10.1214/10-AIHP363 %G en %F AIHPB_2011__47_2_498_0
Prokaj, Vilmos; Rásonyi, Miklós; Schachermayer, Walter. Hiding a constant drift. Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011) no. 2, pp. 498-514. doi: 10.1214/10-AIHP363
Cité par Sources :