Voir la notice de l'article provenant de la source Numdam
We show that for percolation on any transitive graph, the triangle condition implies the open triangle condition.
Nous montrons que dans le cas de la percolation sur un graphe transitif la “condition du triangle” est équivalente à celle du “triangle ouvert”.
@article{AIHPB_2011__47_1_75_0, author = {Kozma, Gady}, title = {The triangle and the open triangle}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {75--79}, publisher = {Gauthier-Villars}, volume = {47}, number = {1}, year = {2011}, doi = {10.1214/09-AIHP352}, mrnumber = {2779397}, zbl = {1221.60140}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1214/09-AIHP352/} }
TY - JOUR AU - Kozma, Gady TI - The triangle and the open triangle JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2011 SP - 75 EP - 79 VL - 47 IS - 1 PB - Gauthier-Villars UR - http://geodesic.mathdoc.fr/articles/10.1214/09-AIHP352/ DO - 10.1214/09-AIHP352 LA - en ID - AIHPB_2011__47_1_75_0 ER -
Kozma, Gady. The triangle and the open triangle. Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011) no. 1, pp. 75-79. doi : 10.1214/09-AIHP352. http://geodesic.mathdoc.fr/articles/10.1214/09-AIHP352/
[1] Tree graph inequalities and critical behavior in percolation models. J. Statist. Phys. 36 (1984) 107-143. | Zbl | MR
and .[2] Percolation critical exponents under the triangle condition. Ann. Probab. 19 (1991) 1520-1536. | Zbl | MR
and .[3] Percolation. Cambridge Univ. Press, New York, 2006. | Zbl | MR
and .[4] Functional Analysis. An Introduction. Graduate Studies in Mathematics 66. Amer. Math. Soc., Providence, RI, 2004. | Zbl | MR
, and .[5] Percolation, 2nd edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 321. Springer-Verlag, Berlin, 1999. | MR
.[6] Critical two-point functions and the lace expansion for spread-out high-dimensional percolation and related models. Ann. Probab. 31 (2003) 349-408. | Zbl | MR
, and .[7] Mean-field critical behaviour for percolation in high dimensions. Comm. Math. Phys. 128 (1990) 333-391. | Zbl | MR
and .[8] Gaussian estimates for Markov chains and random walks on groups. Ann. Probab. 21 (1993) 673-709. | Zbl | MR
and .[9] Mean-field behavior for long- and finite range Ising model, percolation and self-avoiding walk. J. Statist. Phys. 132 (2008) 1001-1049. | Zbl | MR
, and .[10] Percolation on a product of two trees. In preparation.
.[11] The Alexander-Orbach conjecture holds in high dimensions. Invent. Math. 178 (2009) 635-654. | Zbl
and .[12] Gap exponents for percolation processes with triangle condition. J. Statist. Phys. 49 (1987) 235-243. | Zbl | MR
.[13] Multiplicity of phase transitions and mean-field criticality on highly non-amenable graphs. Comm. Math. Phys. 219 (2001) 271-322. | Zbl | MR
.[14] Mean-field criticality for percolation on planar non-amenable graphs. Comm. Math. Phys. 225 (2002) 453-463. | Zbl | MR
.Cité par Sources :