High-dimensional gaussian model selection on a gaussian design
Annales de l'I.H.P. Probabilités et statistiques, Tome 46 (2010) no. 2, pp. 480-524

Voir la notice de l'article provenant de la source Numdam

We consider the problem of estimating the conditional mean of a real gaussian variable Y=∑i=1pθiXi+ɛ where the vector of the covariates (Xi)1≤ip follows a joint gaussian distribution. This issue often occurs when one aims at estimating the graph or the distribution of a gaussian graphical model. We introduce a general model selection procedure which is based on the minimization of a penalized least squares type criterion. It handles a variety of problems such as ordered and complete variable selection, allows to incorporate some prior knowledge on the model and applies when the number of covariates p is larger than the number of observations n. Moreover, it is shown to achieve a non-asymptotic oracle inequality independently of the correlation structure of the covariates. We also exhibit various minimax rates of estimation in the considered framework and hence derive adaptivity properties of our procedure.

Nous nous intéressons à l'estimation de l'espérance conditionnelle d'une variable gaussienne. Ce problème est courant lorsque l'on veut estimer le graphe ou la distribution d'un modèle graphique gaussien. Dans cet article, nous introduisons une procédure de sélection de modèle basée sur la minimisation d'un critère des moindres carrés pénalisés. Cette méthode générale permet de traiter un grand nombre de problèmes comme la sélection ordonnée ou la sélection complête de variables. De plus, elle reste valable dans un cadre de « grande dimension »: lorsque le nombre de covariables est bien plus élevé que le nombre d'observations. L'estimateur obtenue vérifie une inégalité oracle non-asymptotique et ce quelque soit la corrélation entre les covariables. Nous calculons également des vitesses minimax d'estimation dans ce cadre et montrons que notre procédure vérifie diverses propriétés d'adaptation.

DOI : 10.1214/09-AIHP321
Classification : 62J05, 62G08
Keywords: model selection, linear regression, oracle inequalities, gaussian graphical models, minimax rates of estimation
@article{AIHPB_2010__46_2_480_0,
     author = {Verzelen, Nicolas},
     title = {High-dimensional gaussian model selection on a gaussian design},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {480--524},
     publisher = {Gauthier-Villars},
     volume = {46},
     number = {2},
     year = {2010},
     doi = {10.1214/09-AIHP321},
     mrnumber = {2667707},
     zbl = {1191.62076},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1214/09-AIHP321/}
}
TY  - JOUR
AU  - Verzelen, Nicolas
TI  - High-dimensional gaussian model selection on a gaussian design
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2010
SP  - 480
EP  - 524
VL  - 46
IS  - 2
PB  - Gauthier-Villars
UR  - http://geodesic.mathdoc.fr/articles/10.1214/09-AIHP321/
DO  - 10.1214/09-AIHP321
LA  - en
ID  - AIHPB_2010__46_2_480_0
ER  - 
%0 Journal Article
%A Verzelen, Nicolas
%T High-dimensional gaussian model selection on a gaussian design
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2010
%P 480-524
%V 46
%N 2
%I Gauthier-Villars
%U http://geodesic.mathdoc.fr/articles/10.1214/09-AIHP321/
%R 10.1214/09-AIHP321
%G en
%F AIHPB_2010__46_2_480_0
Verzelen, Nicolas. High-dimensional gaussian model selection on a gaussian design. Annales de l'I.H.P. Probabilités et statistiques, Tome 46 (2010) no. 2, pp. 480-524. doi: 10.1214/09-AIHP321

Cité par Sources :