A general wavelet-based profile decomposition in the critical embedding of function spaces
Confluentes Mathematici, Tome 3 (2011) no. 3, pp. 387-411

Voir la notice de l'article provenant de la source Numdam

We characterize the lack of compactness in the critical embedding of functions spaces X ⊂ Y having similar scaling properties in the following terms: a sequence (un)n≥0 bounded in X has a subsequence that can be expressed as a finite sum of translations and dilations of functions (ϕl)l>0 such that the remainder converges to zero in Y as the number of functions in the sum and n tend to +∞. Such a decomposition was established by Gérard in [13] for the embedding of the homogeneous Sobolev space X = Ḣs into the Y = Lp in d dimensions with 0 < s = d/2 - d/p, and then generalized by Jaffard in [15] to the case where X is a Riesz potential space, using wavelet expansions. In this paper, we revisit the wavelet-based profile decomposition, in order to treat a larger range of examples of critical embedding in a hopefully simplified way. In particular, we identify two generic properties on the spaces X and Y that are of key use in building the profile decomposition. These properties may then easily be checked for typical choices of X and Y satisfying critical embedding properties. These includes Sobolev, Besov, Triebel-Lizorkin, Lorentz, Hölder and BMO spaces.

Publié le :
DOI : 10.1142/S1793744211000370

Bahouri, Hajer 1 ; Cohen, Albert 1 ; Koch, Gabriel 1

1
@article{CML_2011__3_3_387_0,
     author = {Bahouri, Hajer and Cohen, Albert and Koch, Gabriel},
     title = {A general wavelet-based profile decomposition in the critical embedding of function spaces},
     journal = {Confluentes Mathematici},
     pages = {387--411},
     publisher = {World Scientific Publishing Co Pte Ltd},
     volume = {3},
     number = {3},
     year = {2011},
     doi = {10.1142/S1793744211000370},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1142/S1793744211000370/}
}
TY  - JOUR
AU  - Bahouri, Hajer
AU  - Cohen, Albert
AU  - Koch, Gabriel
TI  - A general wavelet-based profile decomposition in the critical embedding of function spaces
JO  - Confluentes Mathematici
PY  - 2011
SP  - 387
EP  - 411
VL  - 3
IS  - 3
PB  - World Scientific Publishing Co Pte Ltd
UR  - http://geodesic.mathdoc.fr/articles/10.1142/S1793744211000370/
DO  - 10.1142/S1793744211000370
LA  - en
ID  - CML_2011__3_3_387_0
ER  - 
%0 Journal Article
%A Bahouri, Hajer
%A Cohen, Albert
%A Koch, Gabriel
%T A general wavelet-based profile decomposition in the critical embedding of function spaces
%J Confluentes Mathematici
%D 2011
%P 387-411
%V 3
%N 3
%I World Scientific Publishing Co Pte Ltd
%U http://geodesic.mathdoc.fr/articles/10.1142/S1793744211000370/
%R 10.1142/S1793744211000370
%G en
%F CML_2011__3_3_387_0
Bahouri, Hajer; Cohen, Albert; Koch, Gabriel. A general wavelet-based profile decomposition in the critical embedding of function spaces. Confluentes Mathematici, Tome 3 (2011) no. 3, pp. 387-411. doi: 10.1142/S1793744211000370

Cité par Sources :