Voir la notice de l'article provenant de la source Numdam
We characterize the lack of compactness in the critical embedding of functions spaces X ⊂ Y having similar scaling properties in the following terms: a sequence (un)n≥0 bounded in X has a subsequence that can be expressed as a finite sum of translations and dilations of functions (ϕl)l>0 such that the remainder converges to zero in Y as the number of functions in the sum and n tend to +∞. Such a decomposition was established by Gérard in [13] for the embedding of the homogeneous Sobolev space X = Ḣs into the Y = Lp in d dimensions with 0 < s = d/2 - d/p, and then generalized by Jaffard in [15] to the case where X is a Riesz potential space, using wavelet expansions. In this paper, we revisit the wavelet-based profile decomposition, in order to treat a larger range of examples of critical embedding in a hopefully simplified way. In particular, we identify two generic properties on the spaces X and Y that are of key use in building the profile decomposition. These properties may then easily be checked for typical choices of X and Y satisfying critical embedding properties. These includes Sobolev, Besov, Triebel-Lizorkin, Lorentz, Hölder and BMO spaces.
Bahouri, Hajer 1 ; Cohen, Albert 1 ; Koch, Gabriel 1
@article{CML_2011__3_3_387_0, author = {Bahouri, Hajer and Cohen, Albert and Koch, Gabriel}, title = {A general wavelet-based profile decomposition in the critical embedding of function spaces}, journal = {Confluentes Mathematici}, pages = {387--411}, publisher = {World Scientific Publishing Co Pte Ltd}, volume = {3}, number = {3}, year = {2011}, doi = {10.1142/S1793744211000370}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1142/S1793744211000370/} }
TY - JOUR AU - Bahouri, Hajer AU - Cohen, Albert AU - Koch, Gabriel TI - A general wavelet-based profile decomposition in the critical embedding of function spaces JO - Confluentes Mathematici PY - 2011 SP - 387 EP - 411 VL - 3 IS - 3 PB - World Scientific Publishing Co Pte Ltd UR - http://geodesic.mathdoc.fr/articles/10.1142/S1793744211000370/ DO - 10.1142/S1793744211000370 LA - en ID - CML_2011__3_3_387_0 ER -
%0 Journal Article %A Bahouri, Hajer %A Cohen, Albert %A Koch, Gabriel %T A general wavelet-based profile decomposition in the critical embedding of function spaces %J Confluentes Mathematici %D 2011 %P 387-411 %V 3 %N 3 %I World Scientific Publishing Co Pte Ltd %U http://geodesic.mathdoc.fr/articles/10.1142/S1793744211000370/ %R 10.1142/S1793744211000370 %G en %F CML_2011__3_3_387_0
Bahouri, Hajer; Cohen, Albert; Koch, Gabriel. A general wavelet-based profile decomposition in the critical embedding of function spaces. Confluentes Mathematici, Tome 3 (2011) no. 3, pp. 387-411. doi: 10.1142/S1793744211000370
Cité par Sources :