Voir la notice de l'article provenant de la source Numdam
We study positive Liouville theorems and the asymptotic behavior of positive solutions of p-Laplacian type elliptic equations of the form -Δp(u) + V|u|p-2 u = 0 in X, where X is a domain in ℝd, d ≥ 2 and 1 < p < ∞. We assume that the potential V has a Fuchsian type singularity at a point ζ, where either ζ = ∞ and X is a truncated C2-cone, or ζ = 0 and ζ is either an isolated point of ∂X or belongs to a C2-portion of ∂X.
Fraas, Martin 1 ; Pinchover, Yehuda 1
@article{CML_2011__3_2_291_0, author = {Fraas, Martin and Pinchover, Yehuda}, title = {Positive {Liouville} theorems and asymptotic behavior for $p$-laplacian type elliptic equations with a {Fuchsian} potential}, journal = {Confluentes Mathematici}, pages = {291--323}, publisher = {World Scientific Publishing Co Pte Ltd}, volume = {3}, number = {2}, year = {2011}, doi = {10.1142/S1793744211000321}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1142/S1793744211000321/} }
TY - JOUR AU - Fraas, Martin AU - Pinchover, Yehuda TI - Positive Liouville theorems and asymptotic behavior for $p$-laplacian type elliptic equations with a Fuchsian potential JO - Confluentes Mathematici PY - 2011 SP - 291 EP - 323 VL - 3 IS - 2 PB - World Scientific Publishing Co Pte Ltd UR - http://geodesic.mathdoc.fr/articles/10.1142/S1793744211000321/ DO - 10.1142/S1793744211000321 LA - en ID - CML_2011__3_2_291_0 ER -
%0 Journal Article %A Fraas, Martin %A Pinchover, Yehuda %T Positive Liouville theorems and asymptotic behavior for $p$-laplacian type elliptic equations with a Fuchsian potential %J Confluentes Mathematici %D 2011 %P 291-323 %V 3 %N 2 %I World Scientific Publishing Co Pte Ltd %U http://geodesic.mathdoc.fr/articles/10.1142/S1793744211000321/ %R 10.1142/S1793744211000321 %G en %F CML_2011__3_2_291_0
Fraas, Martin; Pinchover, Yehuda. Positive Liouville theorems and asymptotic behavior for $p$-laplacian type elliptic equations with a Fuchsian potential. Confluentes Mathematici, Tome 3 (2011) no. 2, pp. 291-323. doi: 10.1142/S1793744211000321
Cité par Sources :