Voir la notice de l'article provenant de la source Numdam
We study the model theory of "covers" of groups H definable in an o-minimal structure M. We pose the question of whether any finite central extension G of H is interpretable in M, proving some cases (such as when H is abelian) as well as stating various equivalences. When M is an o-minimal expansion of the reals (so H is a definable Lie group) this is related to Milnor's conjecture [15], and many cases are known. We also prove a strong relative Lω1, ω-categoricity theorem for universal covers of definable Lie groups, and point out some notable differences with the case of covers of complex algebraic groups (studied by Zilber and his students).
Berarducci, Alessandro 1 ; Peterzil, Ya’acov 1 ; Pillay, Anand 1
@article{CML_2010__2_4_473_0, author = {Berarducci, Alessandro and Peterzil, Ya{\textquoteright}acov and Pillay, Anand}, title = {Group covers, $o$-minimality, and categoricity}, journal = {Confluentes Mathematici}, pages = {473--496}, publisher = {World Scientific Publishing Co Pte Ltd}, volume = {2}, number = {4}, year = {2010}, doi = {10.1142/S1793744210000259}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1142/S1793744210000259/} }
TY - JOUR AU - Berarducci, Alessandro AU - Peterzil, Ya’acov AU - Pillay, Anand TI - Group covers, $o$-minimality, and categoricity JO - Confluentes Mathematici PY - 2010 SP - 473 EP - 496 VL - 2 IS - 4 PB - World Scientific Publishing Co Pte Ltd UR - http://geodesic.mathdoc.fr/articles/10.1142/S1793744210000259/ DO - 10.1142/S1793744210000259 LA - en ID - CML_2010__2_4_473_0 ER -
%0 Journal Article %A Berarducci, Alessandro %A Peterzil, Ya’acov %A Pillay, Anand %T Group covers, $o$-minimality, and categoricity %J Confluentes Mathematici %D 2010 %P 473-496 %V 2 %N 4 %I World Scientific Publishing Co Pte Ltd %U http://geodesic.mathdoc.fr/articles/10.1142/S1793744210000259/ %R 10.1142/S1793744210000259 %G en %F CML_2010__2_4_473_0
Berarducci, Alessandro; Peterzil, Ya’acov; Pillay, Anand. Group covers, $o$-minimality, and categoricity. Confluentes Mathematici, Tome 2 (2010) no. 4, pp. 473-496. doi: 10.1142/S1793744210000259
Cité par Sources :