Existence results for nonsmooth second-order differential inclusions, convergence result for a numerical scheme and application to the modeling of inelastic collisions
Confluentes Mathematici, Tome 2 (2010) no. 4, pp. 445-471

Voir la notice de l'article provenant de la source Numdam

We are interested in the existence results for second-order differential inclusions, involving finite number of unilateral constraints in an abstract framework. These constraints are described by a set-valued operator, more precisely a proximal normal cone to a time-dependent set. In order to prove these existence results, we study an extension of the numerical scheme introduced in [10] and prove a convergence result for this scheme.

Publié le :
DOI : 10.1142/S1793744210000247

Bernicot, Frédéric 1 ; Lefebvre-Lepot, Aline 1

1
@article{CML_2010__2_4_445_0,
     author = {Bernicot, Fr\'ed\'eric and Lefebvre-Lepot, Aline},
     title = {Existence results for nonsmooth second-order differential inclusions, convergence result for a numerical scheme and application to the modeling of inelastic collisions},
     journal = {Confluentes Mathematici},
     pages = {445--471},
     publisher = {World Scientific Publishing Co Pte Ltd},
     volume = {2},
     number = {4},
     year = {2010},
     doi = {10.1142/S1793744210000247},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1142/S1793744210000247/}
}
TY  - JOUR
AU  - Bernicot, Frédéric
AU  - Lefebvre-Lepot, Aline
TI  - Existence results for nonsmooth second-order differential inclusions, convergence result for a numerical scheme and application to the modeling of inelastic collisions
JO  - Confluentes Mathematici
PY  - 2010
SP  - 445
EP  - 471
VL  - 2
IS  - 4
PB  - World Scientific Publishing Co Pte Ltd
UR  - http://geodesic.mathdoc.fr/articles/10.1142/S1793744210000247/
DO  - 10.1142/S1793744210000247
LA  - en
ID  - CML_2010__2_4_445_0
ER  - 
%0 Journal Article
%A Bernicot, Frédéric
%A Lefebvre-Lepot, Aline
%T Existence results for nonsmooth second-order differential inclusions, convergence result for a numerical scheme and application to the modeling of inelastic collisions
%J Confluentes Mathematici
%D 2010
%P 445-471
%V 2
%N 4
%I World Scientific Publishing Co Pte Ltd
%U http://geodesic.mathdoc.fr/articles/10.1142/S1793744210000247/
%R 10.1142/S1793744210000247
%G en
%F CML_2010__2_4_445_0
Bernicot, Frédéric; Lefebvre-Lepot, Aline. Existence results for nonsmooth second-order differential inclusions, convergence result for a numerical scheme and application to the modeling of inelastic collisions. Confluentes Mathematici, Tome 2 (2010) no. 4, pp. 445-471. doi: 10.1142/S1793744210000247

Cité par Sources :