Metabelian groups with quadratic Dehn function and Baumslag–Solitar groups
Confluentes Mathematici, Tome 2 (2010) no. 4, pp. 431-443

Voir la notice de l'article provenant de la source Numdam

We prove that metabelian locally compact groups in a certain class have quadratic Dehn function. As an application, we embed the solvable Baumslag–Solitar groups in finitely presented metabelian groups with quadratic Dehn function. Also, we prove that Baumslag's finitely presented metabelian groups, in which the lamplighter groups embed, have quadratic Dehn function.

Publié le :
DOI : 10.1142/S1793744210000235

de Cornulier, Yves 1 ; Tessera, Romain 1

1
@article{CML_2010__2_4_431_0,
     author = {de~Cornulier, Yves and Tessera, Romain},
     title = {Metabelian groups with quadratic {Dehn} function and {Baumslag{\textendash}Solitar} groups},
     journal = {Confluentes Mathematici},
     pages = {431--443},
     publisher = {World Scientific Publishing Co Pte Ltd},
     volume = {2},
     number = {4},
     year = {2010},
     doi = {10.1142/S1793744210000235},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1142/S1793744210000235/}
}
TY  - JOUR
AU  - de Cornulier, Yves
AU  - Tessera, Romain
TI  - Metabelian groups with quadratic Dehn function and Baumslag–Solitar groups
JO  - Confluentes Mathematici
PY  - 2010
SP  - 431
EP  - 443
VL  - 2
IS  - 4
PB  - World Scientific Publishing Co Pte Ltd
UR  - http://geodesic.mathdoc.fr/articles/10.1142/S1793744210000235/
DO  - 10.1142/S1793744210000235
LA  - en
ID  - CML_2010__2_4_431_0
ER  - 
%0 Journal Article
%A de Cornulier, Yves
%A Tessera, Romain
%T Metabelian groups with quadratic Dehn function and Baumslag–Solitar groups
%J Confluentes Mathematici
%D 2010
%P 431-443
%V 2
%N 4
%I World Scientific Publishing Co Pte Ltd
%U http://geodesic.mathdoc.fr/articles/10.1142/S1793744210000235/
%R 10.1142/S1793744210000235
%G en
%F CML_2010__2_4_431_0
de Cornulier, Yves; Tessera, Romain. Metabelian groups with quadratic Dehn function and Baumslag–Solitar groups. Confluentes Mathematici, Tome 2 (2010) no. 4, pp. 431-443. doi: 10.1142/S1793744210000235

Cité par Sources :