Igusa integrals and volume asymptotics in analytic and adelic geometry
Confluentes Mathematici, Tome 2 (2010) no. 3, pp. 351-429

Voir la notice de l'article provenant de la source Numdam

We establish asymptotic formulas for volumes of height balls in analytic varieties over local fields and in adelic points of algebraic varieties over number fields, relating the Mellin transforms of height functions to Igusa integrals and to global geometric invariants of the underlying variety. In the adelic setting, this involves the construction of general Tamagawa measures.

Publié le :
DOI : 10.1142/S1793744210000223

Chambert-Loir, Antoine 1 ; Tschinkel, Yuri 1

1
@article{CML_2010__2_3_351_0,
     author = {Chambert-Loir, Antoine and Tschinkel, Yuri},
     title = {Igusa integrals and volume asymptotics in analytic and adelic geometry},
     journal = {Confluentes Mathematici},
     pages = {351--429},
     publisher = {World Scientific Publishing Co Pte Ltd},
     volume = {2},
     number = {3},
     year = {2010},
     doi = {10.1142/S1793744210000223},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1142/S1793744210000223/}
}
TY  - JOUR
AU  - Chambert-Loir, Antoine
AU  - Tschinkel, Yuri
TI  - Igusa integrals and volume asymptotics in analytic and adelic geometry
JO  - Confluentes Mathematici
PY  - 2010
SP  - 351
EP  - 429
VL  - 2
IS  - 3
PB  - World Scientific Publishing Co Pte Ltd
UR  - http://geodesic.mathdoc.fr/articles/10.1142/S1793744210000223/
DO  - 10.1142/S1793744210000223
LA  - en
ID  - CML_2010__2_3_351_0
ER  - 
%0 Journal Article
%A Chambert-Loir, Antoine
%A Tschinkel, Yuri
%T Igusa integrals and volume asymptotics in analytic and adelic geometry
%J Confluentes Mathematici
%D 2010
%P 351-429
%V 2
%N 3
%I World Scientific Publishing Co Pte Ltd
%U http://geodesic.mathdoc.fr/articles/10.1142/S1793744210000223/
%R 10.1142/S1793744210000223
%G en
%F CML_2010__2_3_351_0
Chambert-Loir, Antoine; Tschinkel, Yuri. Igusa integrals and volume asymptotics in analytic and adelic geometry. Confluentes Mathematici, Tome 2 (2010) no. 3, pp. 351-429. doi: 10.1142/S1793744210000223

Cité par Sources :