Voir la notice de l'article provenant de la source Numdam
In the wake of a preceding article [31] introducing the Schrödinger–Virasoro group, we study its affine action on a space of (1+1)-dimensional Schrödinger operators with time- and space-dependent potential V periodic in time. We focus on the subspace corresponding to potentials that are at most quadratic in the space coordinate, which is in some sense the natural quantization of the space of Hill (Sturm–Liouville) operators on the one-dimensional torus. The orbits in this subspace have finite codimension, and their classification by studying the stabilizers can be obtained by extending Kirillov's results on the orbits of the space of Hill operators under the Virasoro group. We then explain the connection to the theory of Ermakov–Lewis invariants for time-dependent harmonic oscillators. These exact adiabatic invariants behave covariantly under the action of the Schrödinger–Virasoro group, which allows a natural classification of the orbits in terms of a monodromy operator on L2(ℝ) which is closely related to the monodromy matrix for the corresponding Hill operator.
Unterberger, Jérémie 1
@article{CML_2010__2_2_217_0, author = {Unterberger, J\'er\'emie}, title = {A classification of periodic time-dependent generalized harmonic oscillators using a {Hamiltonian} action of the {Schr\"odinger{\textendash}Virasoro} group}, journal = {Confluentes Mathematici}, pages = {217--263}, publisher = {World Scientific Publishing Co Pte Ltd}, volume = {2}, number = {2}, year = {2010}, doi = {10.1142/S1793744210000168}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1142/S1793744210000168/} }
TY - JOUR AU - Unterberger, Jérémie TI - A classification of periodic time-dependent generalized harmonic oscillators using a Hamiltonian action of the Schrödinger–Virasoro group JO - Confluentes Mathematici PY - 2010 SP - 217 EP - 263 VL - 2 IS - 2 PB - World Scientific Publishing Co Pte Ltd UR - http://geodesic.mathdoc.fr/articles/10.1142/S1793744210000168/ DO - 10.1142/S1793744210000168 LA - en ID - CML_2010__2_2_217_0 ER -
%0 Journal Article %A Unterberger, Jérémie %T A classification of periodic time-dependent generalized harmonic oscillators using a Hamiltonian action of the Schrödinger–Virasoro group %J Confluentes Mathematici %D 2010 %P 217-263 %V 2 %N 2 %I World Scientific Publishing Co Pte Ltd %U http://geodesic.mathdoc.fr/articles/10.1142/S1793744210000168/ %R 10.1142/S1793744210000168 %G en %F CML_2010__2_2_217_0
Unterberger, Jérémie. A classification of periodic time-dependent generalized harmonic oscillators using a Hamiltonian action of the Schrödinger–Virasoro group. Confluentes Mathematici, Tome 2 (2010) no. 2, pp. 217-263. doi: 10.1142/S1793744210000168
Cité par Sources :