Topology and dynamics of laminations in surfaces of general type
Journal of the American Mathematical Society, Tome 29 (2016) no. 2, pp. 495-535

Voir la notice de l'article provenant de la source American Mathematical Society

We study Riemann surface laminations in complex algebraic surfaces of general type. We focus on the topology and dynamics of minimal sets of holomorphic foliations and on Levi-flat hypersurfaces. We begin by providing various examples. Then our first result shows that Anosov Levi-flat hypersurfaces do not embed in surfaces of general type. This allows one to classify the possible Thurston’s geometries carried by Levi-flat hypersurfaces in surfaces of general type. Our second result establishes that minimal sets in surfaces of general type have a large Hausdorff dimension as soon as there exists a simply connected leaf. For both results, our methods rely on ergodic theory: we use harmonic measures and Lyapunov exponents.
DOI : 10.1090/jams832

Deroin, Bertrand 1 ; Dupont, Christophe 2

1 Ecole Normale Supérieure, DMA, UMR CNRS 8553, 45 rue d’Ulm, 75230 Paris Cedex 05, France
2 Université de Rennes 1, IRMAR, UMR CNRS 6625, 35042 Rennes Cedex, France
@article{10_1090_jams832,
     author = {Deroin, Bertrand and Dupont, Christophe},
     title = {Topology and dynamics of laminations in surfaces of general type},
     journal = {Journal of the American Mathematical Society},
     pages = {495--535},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2016},
     doi = {10.1090/jams832},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams832/}
}
TY  - JOUR
AU  - Deroin, Bertrand
AU  - Dupont, Christophe
TI  - Topology and dynamics of laminations in surfaces of general type
JO  - Journal of the American Mathematical Society
PY  - 2016
SP  - 495
EP  - 535
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams832/
DO  - 10.1090/jams832
ID  - 10_1090_jams832
ER  - 
%0 Journal Article
%A Deroin, Bertrand
%A Dupont, Christophe
%T Topology and dynamics of laminations in surfaces of general type
%J Journal of the American Mathematical Society
%D 2016
%P 495-535
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams832/
%R 10.1090/jams832
%F 10_1090_jams832
Deroin, Bertrand; Dupont, Christophe. Topology and dynamics of laminations in surfaces of general type. Journal of the American Mathematical Society, Tome 29 (2016) no. 2, pp. 495-535. doi: 10.1090/jams832

[1] Ancona, A. Théorie du potentiel sur les graphes et les variétés 1990 1 112

[2] Barbot, Thierry, Fenley, Sã©Rgio R. Pseudo-Anosov flows in toroidal manifolds Geom. Topol. 2013 1877 1954

[3] Barrett, David E. Complex analytic realization of Reeb’s foliation of 𝑆³ Math. Z. 1990 355 361

[4] Barrett, D. E., Fornã¦Ss, J. E. On the smoothness of Levi-foliations Publ. Mat. 1988 171 177

[5] Barth, W., Peters, C., Van De Ven, A. Compact complex surfaces 1984

[6] Beauville, Arnaud Complex algebraic surfaces 1996

[7] Brunella, Marco Feuilletages holomorphes sur les surfaces complexes compactes Ann. Sci. École Norm. Sup. (4) 1997 569 594

[8] Brunella, Marco Birational geometry of foliations 2000 138

[9] Brunella, Marco Courbes entières et feuilletages holomorphes Enseign. Math. (2) 1999 195 216

[10] Brunella, Marco Mesures harmoniques conformes et feuilletages du plan projectif complexe Bull. Braz. Math. Soc. (N.S.) 2007 517 524

[11] Calegari, Danny Foliations and the geometry of 3-manifolds 2007

[12] Camacho, C., Lins Neto, A., Sad, P. Minimal sets of foliations on complex projective spaces Inst. Hautes Études Sci. Publ. Math. 1988

[13] Candel, Alberto Uniformization of surface laminations Ann. Sci. École Norm. Sup. (4) 1993 489 516

[14] Candel, Alberto, Conlon, Lawrence Foliations. I 2000

[15] Candel, Alberto, Conlon, Lawrence Foliations. II 2003

[16] Chavel, Isaac Eigenvalues in Riemannian geometry 1984

[17] Deroin, Bertrand Hypersurfaces Levi-plates immergées dans les surfaces complexes de courbure positive Ann. Sci. École Norm. Sup. (4) 2005 57 75

[18] Deroin, B. Non rigidity of Riemann surface laminations Proc. Amer. Math. Soc. 2007

[19] Deroin, Bertrand, Kleptsyn, Victor Random conformal dynamical systems Geom. Funct. Anal. 2007 1043 1105

[20] Diverio, Simone, Rousseau, Erwan A survey on hyperbolicity of projective hypersurfaces 2011

[21] Fornã¦Ss, J. E., Sibony, N. Harmonic currents of finite energy and laminations Geom. Funct. Anal. 2005 962 1003

[22] Franks, John, Williams, Bob Anomalous Anosov flows 1980 158 174

[23] Friedman, Robert Algebraic surfaces and holomorphic vector bundles 1998

[24] Friedman, Robert, Morgan, John W. Smooth four-manifolds and complex surfaces 1994

[25] Garnett, Lucy Foliations, the ergodic theorem and Brownian motion J. Functional Analysis 1983 285 311

[26] Ghys, ÉTienne Rigidité différentiable des groupes fuchsiens Inst. Hautes Études Sci. Publ. Math. 1993

[27] Ghys, ÉTienne Sur les groupes engendrés par des difféomorphismes proches de l’identité Bol. Soc. Brasil. Mat. (N.S.) 1993 137 178

[28] Ghys, ÉTienne Laminations par surfaces de Riemann 1999

[29] Sur les groupes hyperboliques d’après Mikhael Gromov 1990

[30] Ghys, E., Sergiescu, V. Stabilité et conjugaison différentiable pour certains feuilletages Topology 1980 179 197

[31] Goldman, William M. Topological components of spaces of representations Invent. Math. 1988 557 607

[32] Goodman, Sue Dehn surgery on Anosov flows 1983 300 307

[33] Handel, Michael, Thurston, William P. Anosov flows on new three manifolds Invent. Math. 1980 95 103

[34] Inaba, Takashi, Mishchenko, Michael A. On real submanifolds of Kähler manifolds foliated by complex submanifolds Proc. Japan Acad. Ser. A Math. Sci. 1994 1 2

[35] Ivashkovich, Sergey Vanishing cycles in holomorphic foliations by curves and foliated shells Geom. Funct. Anal. 2011 70 140

[36] Kaä­Manovich, V. A. Brownian motion and harmonic functions on covering manifolds. An entropic approach Dokl. Akad. Nauk SSSR 1986 1045 1049

[37] Kaä­Manovich, V. A. Brownian motion on foliations: entropy, invariant measures, mixing Funktsional. Anal. i Prilozhen. 1988 82 83

[38] Kapovich, Michael Hyperbolic manifolds and discrete groups 2001

[39] Ledrappier, F. Quelques propriétés des exposants caractéristiques 1984 305 396

[40] Ledrappier, Franã§Ois Poisson boundaries of discrete groups of matrices Israel J. Math. 1985 319 336

[41] Ledrappier, F. Profil d’entropie dans le cas continu Astérisque 1996 189 198

[42] Levitt, Gilbert Feuilletages des variétés de dimension 3 qui sont des fibres en cercles Comment. Math. Helv. 1978 572 594

[43] Loray, Frank, Marã­N Pã©Rez, David Projective structures and projective bundles over compact Riemann surfaces Astérisque 2009 223 252

[44] Loray, Frank, Rebelo, Julio C. Minimal, rigid foliations by curves on ℂℙⁿ J. Eur. Math. Soc. (JEMS) 2003 147 201

[45] Maã±Ã©, Ricardo The Hausdorff dimension of invariant probabilities of rational maps 1988 86 117

[46] Matsumoto, Shigenori Some remarks on foliated 𝑆¹ bundles Invent. Math. 1987 343 358

[47] Mattila, Pertti Geometry of sets and measures in Euclidean spaces 1995

[48] Mcquillan, Michael Diophantine approximations and foliations Inst. Hautes Études Sci. Publ. Math. 1998 121 174

[49] Mcmullen, Curtis T. Renormalization and 3-manifolds which fiber over the circle 1996

[50] Nakai, Isao Separatrices for nonsolvable dynamics on 𝐶,0 Ann. Inst. Fourier (Grenoble) 1994 569 599

[51] Nemirovskiä­, S. Yu. Stein domains with Levi-plane boundaries on compact complex surfaces Mat. Zametki 1999 632 635

[52] Ohsawa, Takeo A Levi-flat in a Kummer surface whose complement is strongly pseudoconvex Osaka J. Math. 2006 747 750

[53] Pesin, Yakov B. Dimension theory in dynamical systems 1997

[54] Pinsky, Ross G. Positive harmonic functions and diffusion 1995

[55] Plante, J. F. Foliations with measure preserving holonomy Ann. of Math. (2) 1975 327 361

[56] Poincarã©, H. Sur les cycles des surfaces algébriques J. Math. Pures Appl. 1902

[57] Reider, Igor Vector bundles of rank 2 and linear systems on algebraic surfaces Ann. of Math. (2) 1988 309 316

[58] Scott, Peter The geometries of 3-manifolds Bull. London Math. Soc. 1983 401 487

[59] Shiga, Hiroshige On monodromies of holomorphic families of Riemann surfaces and modular transformations Math. Proc. Cambridge Philos. Soc. 1997 541 549

[60] Sullivan, Dennis Cycles for the dynamical study of foliated manifolds and complex manifolds Invent. Math. 1976 225 255

[61] Thurston, W. Foliations on 3-manifolds which are circle bundles 1972

[62] Thurston, W. Hyperbolic Structures on 3-manifolds, II: Surface groups and 3-manifolds which fiber over the circle

[63] Verjovsky, Alberto A uniformization theorem for holomorphic foliations 1987 233 253

[64] Wood, John W. Bundles with totally disconnected structure group Comment. Math. Helv. 1971 257 273

Cité par Sources :