Dynamical degrees of birational transformations of projective surfaces
Journal of the American Mathematical Society, Tome 29 (2016) no. 2, pp. 415-471

Voir la notice de l'article provenant de la source American Mathematical Society

The dynamical degree $\lambda (f)$ of a birational transformation $f$ measures the exponential growth rate of the degree of the formulas that define the $n$th iterate of $f$. We study the set of all dynamical degrees of all birational transformations of projective surfaces, and the relationship between the value of $\lambda (f)$ and the structure of the conjugacy class of $f$. For instance, the set of all dynamical degrees of birational transformations of the complex projective plane is a closed and well ordered set of algebraic numbers.
DOI : 10.1090/jams831

Blanc, Jérémy 1 ; Cantat, Serge 2

1 Mathematisches Institut, Universität Basel, Spiegelgasse 1, 4051 Basel, Switzerland
2 IRMAR, UMR 6625 du CNRS, Université de Rennes I, 35042 Rennes, France
@article{10_1090_jams831,
     author = {Blanc, J\~A{\textcopyright}r\~A{\textcopyright}my and Cantat, Serge},
     title = {Dynamical degrees of birational transformations of projective surfaces},
     journal = {Journal of the American Mathematical Society},
     pages = {415--471},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2016},
     doi = {10.1090/jams831},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams831/}
}
TY  - JOUR
AU  - Blanc, Jérémy
AU  - Cantat, Serge
TI  - Dynamical degrees of birational transformations of projective surfaces
JO  - Journal of the American Mathematical Society
PY  - 2016
SP  - 415
EP  - 471
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams831/
DO  - 10.1090/jams831
ID  - 10_1090_jams831
ER  - 
%0 Journal Article
%A Blanc, Jérémy
%A Cantat, Serge
%T Dynamical degrees of birational transformations of projective surfaces
%J Journal of the American Mathematical Society
%D 2016
%P 415-471
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams831/
%R 10.1090/jams831
%F 10_1090_jams831
Blanc, Jérémy; Cantat, Serge. Dynamical degrees of birational transformations of projective surfaces. Journal of the American Mathematical Society, Tome 29 (2016) no. 2, pp. 415-471. doi: 10.1090/jams831

[1] Alberich-Carramiã±Ana, Maria Geometry of the plane Cremona maps 2002

[2] Barth, Wolf P., Hulek, Klaus, Peters, Chris A. M., Van De Ven, Antonius Compact complex surfaces 2004

[3] Bedford, Eric, Diller, Jeffrey Energy and invariant measures for birational surface maps Duke Math. J. 2005 331 368

[4] Bedford, Eric, Kim, Kyounghee Periodicities in linear fractional recurrences: degree growth of birational surface maps Michigan Math. J. 2006 647 670

[5] Bedford, Eric, Kim, Kyounghee Dynamics of rational surface automorphisms: linear fractional recurrences J. Geom. Anal. 2009 553 583

[6] Benedetti, Riccardo, Petronio, Carlo Lectures on hyperbolic geometry 1992

[7] Benoist, Yves, De La Harpe, Pierre Adhérence de Zariski des groupes de Coxeter Compos. Math. 2004 1357 1366

[8] Bertin, M.-J., Decomps-Guilloux, A., Grandet-Hugot, M., Pathiaux-Delefosse, M., Schreiber, J.-P. Pisot and Salem numbers 1992

[9] Blanc, Jã©Rã©My Sous-groupes algébriques du groupe de Cremona Transform. Groups 2009 249 285

[10] Blanc, Jã©Rã©My, Cantat, Serge Small dynamical degrees and Pisot numbers below the Golden mean 2015

[11] Blanc, Jã©Rã©My, Dã©Serti, Julie Degree growth of birational maps of the plane Ann. Sc. Norm. Super. Pisa Cl. Sci. (to be published) 2011

[12] Blanc, Jã©Rã©My, Furter, Jean-Philippe Topologies and structures of the Cremona groups Ann. of Math. (2) 2013 1173 1198

[13] Brock, Jeffrey F. Weil-Petersson translation distance and volumes of mapping tori Comm. Anal. Geom. 2003 987 999

[14] Burger, Marc, Iozzi, Alessandra, Monod, Nicolas Equivariant embeddings of trees into hyperbolic spaces Int. Math. Res. Not. 2005 1331 1369

[15] Cantat, Serge Dynamique des automorphismes des surfaces projectives complexes C. R. Acad. Sci. Paris Sér. I Math. 1999 901 906

[16] Cantat, Serge Sur les groupes de transformations birationnelles des surfaces Ann. of Math. (2) 2011 299 340

[17] Cantat, Serge The Cremona group in two variables 2012

[18] Cantat, Serge Dynamics of automorphisms of compact complex surfaces 2014

[19] Cantat, Serge, Lamy, Stã©Phane Normal subgroups in the Cremona group Acta Math. 2013 31 94

[20] Coornaert, M., Delzant, T., Papadopoulos, A. Géométrie et théorie des groupes 1990

[21] Diller, Jeffrey Cremona transformations, surface automorphisms, and plane cubics Michigan Math. J. 2011 409 440

[22] Diller, J., Favre, C. Dynamics of bimeromorphic maps of surfaces Amer. J. Math. 2001 1135 1169

[23] Dinh, Tien-Cuong, Sibony, Nessim Une borne supérieure pour l’entropie topologique d’une application rationnelle Ann. of Math. (2) 2005 1637 1644

[24] Dolgachev, I., Kond\B{O}, S. A supersingular 𝐾3 surface in characteristic 2 and the Leech lattice Int. Math. Res. Not. 2003 1 23

[25] Dolgachev, Igor, Ortland, David Point sets in projective spaces and theta functions Astérisque 1988

[26] Enriques, Federigo Sui gruppi continui di trasformazioni cremoniane nel piano Rom. Acc. L. Rend. (5) 1er Sem., 1893

[27] Esnault, Hã©Lã¨Ne, Oguiso, Keiji, Yu, Xun Automorphisms of elliptic 𝐾3 surfaces and salem numbers of maximal degree 2014

[28] Favre, Charles Le groupe de Cremona et ses sous-groupes de type fini Astérisque 2010

[29] Franks, J., Rykken, E. Pseudo-Anosov homeomorphisms with quadratic expansion Proc. Amer. Math. Soc. 1999 2183 2192

[30] Gizatullin, M. Kh. Defining relations for the Cremona group of the plane Izv. Akad. Nauk SSSR Ser. Mat. 1982

[31] Harbourne, Brian Automorphisms of 𝐾3-like rational surfaces 1987 17 28

[32] Jã¡Nos Kollã¡R, Karen E. Smith, Alessio Corti Rational and nearly rational varieties 2004

[33] Leininger, Christopher J. On groups generated by two positive multi-twists: Teichmüller curves and Lehmer’s number Geom. Topol. 2004 1301 1359

[34] Lieberman, David I. Compactness of the Chow scheme: applications to automorphisms and deformations of Kähler manifolds 1978 140 186

[35] Masur, Howard A., Minsky, Yair N. Geometry of the complex of curves. I. Hyperbolicity Invent. Math. 1999 103 149

[36] Mcmullen, Curtis T. Coxeter groups, Salem numbers and the Hilbert metric Publ. Math. Inst. Hautes Études Sci. 2002 151 183

[37] Mcmullen, Curtis T. Dynamics on blowups of the projective plane Publ. Math. Inst. Hautes Études Sci. 2007 49 89

[38] Mcmullen, Curtis T. Dynamics with small entropy on projective 𝐾3 surfaces Inventiones Math. 2011

[39] Nagata, Masayoshi On rational surfaces. I. Irreducible curves of arithmetic genus 0 or 1 Mem. Coll. Sci. Univ. Kyoto Ser. A. Math. 1960 351 370

[40] Nagata, Masayoshi On rational surfaces. II Mem. Coll. Sci. Univ. Kyoto Ser. A. Math. 1960/61 271 293

[41] Thurston, William P. Entropies in dimension one 2014

[42] Uehara, Takato Rational surface automorphisms with positive entropy 2012

[43] Vaquiã©, Michel Valuations 2000 539 590

[44] Xie, Junyi Periodic points of birational transformations on projective surfaces Duke Math. J. (to be published) 2011

Cité par Sources :