Cofinality spectrum theorems in model theory, set theory, and general topology
Journal of the American Mathematical Society, Tome 29 (2016) no. 1, pp. 237-297
Voir la notice de l'article provenant de la source American Mathematical Society
We connect and solve two long-standing open problems in quite different areas: the model-theoretic question of whether $SOP_2$ is maximal in Keislerâs order, and the question from general topology/set theory of whether $\mathfrak {p} = \mathfrak {t}$, the oldest problem on cardinal invariants of the continuum. We do so by showing these problems can be translated into instances of a more fundamental problem which we state and solve completely, using model-theoretic methods.
@article{10_1090_jams830,
author = {Malliaris, M. and Shelah, S.},
title = {Cofinality spectrum theorems in model theory, set theory, and general topology},
journal = {Journal of the American Mathematical Society},
pages = {237--297},
publisher = {mathdoc},
volume = {29},
number = {1},
year = {2016},
doi = {10.1090/jams830},
url = {http://geodesic.mathdoc.fr/articles/10.1090/jams830/}
}
TY - JOUR AU - Malliaris, M. AU - Shelah, S. TI - Cofinality spectrum theorems in model theory, set theory, and general topology JO - Journal of the American Mathematical Society PY - 2016 SP - 237 EP - 297 VL - 29 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/jams830/ DO - 10.1090/jams830 ID - 10_1090_jams830 ER -
%0 Journal Article %A Malliaris, M. %A Shelah, S. %T Cofinality spectrum theorems in model theory, set theory, and general topology %J Journal of the American Mathematical Society %D 2016 %P 237-297 %V 29 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/jams830/ %R 10.1090/jams830 %F 10_1090_jams830
Malliaris, M.; Shelah, S. Cofinality spectrum theorems in model theory, set theory, and general topology. Journal of the American Mathematical Society, Tome 29 (2016) no. 1, pp. 237-297. doi: 10.1090/jams830
Cité par Sources :