Pin(2)-Equivariant Seiberg-Witten Floer homology and the Triangulation Conjecture
Journal of the American Mathematical Society, Tome 29 (2016) no. 1, pp. 147-176

Voir la notice de l'article provenant de la source American Mathematical Society

We define $\operatorname {Pin}(2)$-equivariant Seiberg-Witten Floer homology for rational homology $3$-spheres equipped with a spin structure. The analogue of Frøyshov’s correction term in this setting is an integer-valued invariant of homology cobordism whose mod $2$ reduction is the Rokhlin invariant. As an application, we show that there are no homology $3$-spheres $Y$ of the Rokhlin invariant one such that $Y \#Y$ bounds an acyclic smooth $4$-manifold. By previous work of Galewski-Stern and Matumoto, this implies the existence of non-triangulable high-dimensional manifolds.
DOI : 10.1090/jams829

Manolescu, Ciprian 1

1 Department of Mathematics, UCLA, 520 Portola Plaza, Los Angeles, California 90095
@article{10_1090_jams829,
     author = {Manolescu, Ciprian},
     title = {Pin(2)-Equivariant {Seiberg-Witten} {Floer} homology and the {Triangulation} {Conjecture}},
     journal = {Journal of the American Mathematical Society},
     pages = {147--176},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2016},
     doi = {10.1090/jams829},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams829/}
}
TY  - JOUR
AU  - Manolescu, Ciprian
TI  - Pin(2)-Equivariant Seiberg-Witten Floer homology and the Triangulation Conjecture
JO  - Journal of the American Mathematical Society
PY  - 2016
SP  - 147
EP  - 176
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams829/
DO  - 10.1090/jams829
ID  - 10_1090_jams829
ER  - 
%0 Journal Article
%A Manolescu, Ciprian
%T Pin(2)-Equivariant Seiberg-Witten Floer homology and the Triangulation Conjecture
%J Journal of the American Mathematical Society
%D 2016
%P 147-176
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams829/
%R 10.1090/jams829
%F 10_1090_jams829
Manolescu, Ciprian. Pin(2)-Equivariant Seiberg-Witten Floer homology and the Triangulation Conjecture. Journal of the American Mathematical Society, Tome 29 (2016) no. 1, pp. 147-176. doi: 10.1090/jams829

[1] Akbulut, Selman, Mccarthy, John D. Casson’s invariant for oriented homology 3-spheres 1990

[2] Atiyah, M. F. Thom complexes Proc. London Math. Soc. (3) 1961 291 310

[3] Atiyah, M. F., Patodi, V. K., Singer, I. M. Spectral asymmetry and Riemannian geometry. I Math. Proc. Cambridge Philos. Soc. 1975 43 69

[4] Bauer, Stefan, Furuta, Mikio A stable cohomotopy refinement of Seiberg-Witten invariants. I Invent. Math. 2004 1 19

[5] Bredon, Glen E. Introduction to compact transformation groups 1972

[6] Cannon, J. W. Shrinking cell-like decompositions of manifolds. Codimension three Ann. of Math. (2) 1979 83 112

[7] Conley, Charles Isolated invariant sets and the Morse index 1978

[8] Cornea, Octavian Homotopical dynamics: suspension and duality Ergodic Theory Dynam. Systems 2000 379 391

[9] Tom Dieck, Tammo Transformation groups 1987

[10] Edwards, R. D. Suspensions of homology spheres

[11] Edwards, Robert D. The topology of manifolds and cell-like maps 1980 111 127

[12] Eells, James, Jr., Kuiper, Nicolaas H. An invariant for certain smooth manifolds Ann. Mat. Pura Appl. (4) 1962 93 110

[13] Fintushel, Ronald, Stern, Ronald J. Pseudofree orbifolds Ann. of Math. (2) 1985 335 364

[14] Fintushel, Ronald, Stern, Ronald J. Instanton homology of Seifert fibred homology three spheres Proc. London Math. Soc. (3) 1990 109 137

[15] Floer, Andreas A refinement of the Conley index and an application to the stability of hyperbolic invariant sets Ergodic Theory Dynam. Systems 1987 93 103

[16] Floer, Andreas An instanton-invariant for 3-manifolds Comm. Math. Phys. 1988 215 240

[17] Freedman, Michael Hartley The topology of four-dimensional manifolds J. Differential Geometry 1982 357 453

[18] Frã¸Yshov, Kim A. The Seiberg-Witten equations and four-manifolds with boundary Math. Res. Lett. 1996 373 390

[19] Frã¸Yshov, Kim A. Equivariant aspects of Yang-Mills Floer theory Topology 2002 525 552

[20] Frã¸Yshov, Kim A. Monopole Floer homology for rational homology 3-spheres Duke Math. J. 2010 519 576

[21] Fukumoto, Y., Furuta, M. Homology 3-spheres bounding acyclic 4-manifolds Math. Res. Lett. 2000 757 766

[22] Fukumoto, Yoshihiro, Furuta, Mikio, Ue, Masaaki 𝑊-invariants and Neumann-Siebenmann invariants for Seifert homology 3-spheres Topology Appl. 2001 333 369

[23] Furuta, Mikio Homology cobordism group of homology 3-spheres Invent. Math. 1990 339 355

[24] Furuta, M. Monopole equation and the \frac{11}8-conjecture Math. Res. Lett. 2001 279 291

[25] Galewski, D., Stern, R. A universal 5-manifold with respect to simplicial triangulations 1979 345 350

[26] Galewski, David E., Stern, Ronald J. Classification of simplicial triangulations of topological manifolds Ann. of Math. (2) 1980 1 34

[27] Gä™Ba, Kazimierz Degree for gradient equivariant maps and equivariant Conley index 1997 247 272

[28] Greenlees, J. P. C., May, J. P. Generalized Tate cohomology Mem. Amer. Math. Soc. 1995

[29] Khandhawit, T. A new gauge slice for the relative Bauer-Furuta invariants

[30] Kirby, Robion C., Siebenmann, Laurence C. Foundational essays on topological manifolds, smoothings, and triangulations 1977

[31] Kronheimer, P. B., Manolescu, C. Periodic Floer pro-spectra from the Seiberg-Witten equations

[32] Kronheimer, Peter, Mrowka, Tomasz Monopoles and three-manifolds 2007

[33] Kronheimer, P., Mrowka, T., Ozsvã¡Th, P., Szabã³, Z. Monopoles and lens space surgeries Ann. of Math. (2) 2007 457 546

[34] Lewis, G., May, J. P., Mcclure, J. Ordinary 𝑅𝑂(𝐺)-graded cohomology Bull. Amer. Math. Soc. (N.S.) 1981 208 212

[35] Lewis, L. G., Jr., May, J. P., Steinberger, M., Mcclure, J. E. Equivariant stable homotopy theory 1986

[36] Manolescu, Ciprian Seiberg-Witten-Floer stable homotopy type of three-manifolds with 𝑏₁ Geom. Topol. 2003 889 932

[37] Manolescu, Ciprian A gluing theorem for the relative Bauer-Furuta invariants J. Differential Geom. 2007 117 153

[38] Manolescu, Ciprian, Owens, Brendan A concordance invariant from the Floer homology of double branched covers Int. Math. Res. Not. IMRN 2007

[39] Matumoto, Takao Triangulation of manifolds 1978 3 6

[40] Moise, Edwin E. Affine structures in 3-manifolds. V. The triangulation theorem and Hauptvermutung Ann. of Math. (2) 1952 96 114

[41] Mrowka, Tomasz, Ozsvã¡Th, Peter, Yu, Baozhen Seiberg-Witten monopoles on Seifert fibered spaces Comm. Anal. Geom. 1997 685 791

[42] Mrowka, Tomasz, Ruberman, Daniel, Saveliev, Nikolai Seiberg-Witten equations, end-periodic Dirac operators, and a lift of Rohlin’s invariant J. Differential Geom. 2011 333 377

[43] Neumann, Walter D. An invariant of plumbed homology spheres 1980 125 144

[44] Ozsvã¡Th, Peter, Szabã³, Zoltã¡N Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary Adv. Math. 2003 179 261

[45] Ozsvã¡Th, Peter, Szabã³, Zoltã¡N On the Floer homology of plumbed three-manifolds Geom. Topol. 2003 185 224

[46] Ozsvã¡Th, Peter, Szabã³, Zoltã¡N Holomorphic disks and three-manifold invariants: properties and applications Ann. of Math. (2) 2004 1159 1245

[47] Ozsvã¡Th, Peter, Szabã³, Zoltã¡N Holomorphic disks and topological invariants for closed three-manifolds Ann. of Math. (2) 2004 1027 1158

[48] Ozsvã¡Th, Peter, Szabã³, Zoltã¡N Holomorphic triangles and invariants for smooth four-manifolds Adv. Math. 2006 326 400

[49] Pruszko, Artur M. The Conley index for flows preserving generalized symmetries 1999 193 217

[50] Rohlin, V. A. New results in the theory of four-dimensional manifolds Doklady Akad. Nauk SSSR (N.S.) 1952 221 224

[51] Rohlin, V. A. New results in the theory of four-dimensional manifolds Doklady Akad. Nauk SSSR (N.S.) 1952 221 224

[52] Ruberman, Daniel, Saveliev, Nikolai Rohlin’s invariant and gauge theory. II. Mapping tori Geom. Topol. 2004 35 76

[53] Saveliev, Nikolai Floer homology and invariants of homology cobordism Internat. J. Math. 1998 885 919

[54] Saveliev, Nikolai Floer homology of Brieskorn homology spheres J. Differential Geom. 1999 15 87

[55] Saveliev, Nikolai Fukumoto-Furuta invariants of plumbed homology 3-spheres Pacific J. Math. 2002 465 490

[56] Siebenmann, L. On vanishing of the Rohlin invariant and nonfinitely amphicheiral homology 3-spheres 1980 172 222

[57] Siebenmann, L. C. Are nontriangulable manifolds triangulable? 1970 77 84

[58] Spanier, E. H. Function spaces and duality Ann. of Math. (2) 1959 338 378

[59] Spanier, E. H., Whitehead, J. H. C. Duality in homotopy theory Mathematika 1955 56 80

[60] Wirthmã¼Ller, Klaus Equivariant homology and duality Manuscripta Math. 1974 373 390

[61] Wirthmã¼Ller, Klaus Equivariant 𝑆-duality Arch. Math. (Basel) 1975 427 431

Cité par Sources :