Topology of quadrature domains
Journal of the American Mathematical Society, Tome 29 (2016) no. 2, pp. 333-369

Voir la notice de l'article provenant de la source American Mathematical Society

We address the problem of topology of quadrature domains, namely we give upper bounds on the connectivity of the domain in terms of the number of nodes and their multiplicities in the quadrature identity.
DOI : 10.1090/jams828

Lee, Seung-Yeop 1 ; Makarov, Nikolai 1

1 Department of Mathematics, California Institute of Technology, Pasadena, California 91125
@article{10_1090_jams828,
     author = {Lee, Seung-Yeop and Makarov, Nikolai},
     title = {Topology of quadrature domains},
     journal = {Journal of the American Mathematical Society},
     pages = {333--369},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2016},
     doi = {10.1090/jams828},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams828/}
}
TY  - JOUR
AU  - Lee, Seung-Yeop
AU  - Makarov, Nikolai
TI  - Topology of quadrature domains
JO  - Journal of the American Mathematical Society
PY  - 2016
SP  - 333
EP  - 369
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams828/
DO  - 10.1090/jams828
ID  - 10_1090_jams828
ER  - 
%0 Journal Article
%A Lee, Seung-Yeop
%A Makarov, Nikolai
%T Topology of quadrature domains
%J Journal of the American Mathematical Society
%D 2016
%P 333-369
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams828/
%R 10.1090/jams828
%F 10_1090_jams828
Lee, Seung-Yeop; Makarov, Nikolai. Topology of quadrature domains. Journal of the American Mathematical Society, Tome 29 (2016) no. 2, pp. 333-369. doi: 10.1090/jams828

[1] Aharonov, Dov, Shapiro, Harold S. A minimal-area problem in conformal mapping. (Abstract) 1974 1 5

[2] Aharonov, Dov, Shapiro, Harold S. Domains on which analytic functions satisfy quadrature identities J. Analyse Math. 1976 39 73

[3] Aharonov, D., Shapiro, H. S. A minimal-area problem in conformal mapping - preliminary report: Part II

[4] Aharonov, Dov, Shapiro, Harold S., Solynin, Alexander Yu. A minimal area problem in conformal mapping J. Anal. Math. 1999 157 176

[5] Aharonov, Dov, Shapiro, Harold S., Solynin, Alexander Yu. A minimal area problem in conformal mapping. II J. Anal. Math. 2001 259 288

[6] Brannan, D. A. Coefficient regions for univalent polynomials of small degree Mathematika 1967 165 169

[7] Caffarelli, Luis A., Karp, Lavi, Shahgholian, Henrik Regularity of a free boundary with application to the Pompeiu problem Ann. of Math. (2) 2000 269 292

[8] Carleson, Lennart, Gamelin, Theodore W. Complex dynamics 1993

[9] ČEredniäEnko, V. G. Inverse Logarithmic Potential Problem 1996 247

[10] Cowling, V. F., Royster, W. C. Domains of variability for univalent polynomials Proc. Amer. Math. Soc. 1968 767 772

[11] Crowdy, Darren Quadrature domains and fluid dynamics 2005 113 129

[12] Crowdy, Darren, Marshall, Jonathan Constructing multiply connected quadrature domains SIAM J. Appl. Math. 2004 1334 1359

[13] Davis, Philip J. The Schwarz function and its applications 1974

[14] Douady, Adrien, Hubbard, John Hamal On the dynamics of polynomial-like mappings Ann. Sci. École Norm. Sup. (4) 1985 287 343

[15] Duren, Peter L. Univalent functions 1983

[16] Elbau, Peter, Felder, Giovanni Density of eigenvalues of random normal matrices Comm. Math. Phys. 2005 433 450

[17] Epstein, Bernard On the mean-value property of harmonic functions Proc. Amer. Math. Soc. 1962 830

[18] Epstein, Bernard, Schiffer, M. M. On the mean-value property of harmonic functions J. Analyse Math. 1965 109 111

[19] Varchenko, A. N., ÈTingof, P. I. Why the boundary of a round drop becomes a curve of order four 1992

[20] Galin, L. A. Unsteady filtration with a free surface C. R. (Doklady) Acad. Sci. URSS (N.S.) 1945 246 249

[21] Geyer, Lukas Sharp bounds for the valence of certain harmonic polynomials Proc. Amer. Math. Soc. 2008 549 555

[22] Griffiths, Phillip, Harris, Joseph Principles of algebraic geometry 1994

[23] Gustafsson, Bjã¶Rn, Vasil′Ev, Alexander Conformal and potential analysis in Hele-Shaw cells 2006

[24] Gustafsson, Bjã¶Rn, Shapiro, Harold S. What is a quadrature domain? 2005 1 25

[25] Gustafsson, Bjã¶Rn Quadrature identities and the Schottky double Acta Appl. Math. 1983 209 240

[26] Gustafsson, Bjã¶Rn Singular and special points on quadrature domains from an algebraic geometric point of view J. Analyse Math. 1988 91 117

[27] Gustafsson, Bjã¶Rn Applications of variational inequalities to a moving boundary problem for Hele-Shaw flows SIAM J. Math. Anal. 1985 279 300

[28] Gustafsson, Bjã¶Rn On quadrature domains and an inverse problem in potential theory J. Analyse Math. 1990 172 216

[29] Gustafsson, Bjã¶Rn, Sakai, Makoto Properties of some balayage operators, with applications to quadrature domains and moving boundary problems Nonlinear Anal. 1994 1221 1245

[30] Gustafsson, Bjã¶Rn, He, Chiyu, Milanfar, Peyman, Putinar, Mihai Reconstructing planar domains from their moments Inverse Problems 2000 1053 1070

[31] Hedenmalm, Hã¥Kan, Makarov, Nikolai Coulomb gas ensembles and Laplacian growth Proc. Lond. Math. Soc. (3) 2013 859 907

[32] Johansson, Kurt On fluctuations of eigenvalues of random Hermitian matrices Duke Math. J. 1998 151 204

[33] Karp, Lavi, Shahgholian, Henrik Regularity of a free boundary problem J. Geom. Anal. 1999 653 669

[34] Khavinson, Dmitry, ŚWiaì§Tek, Grzegorz On the number of zeros of certain harmonic polynomials Proc. Amer. Math. Soc. 2003 409 414

[35] Klein, Avraham, Agam, Oded Topological transitions in evaporating thin films J. Phys. A 2012

[36] Kostov, I. K., Krichever, I., Mineev-Weinstein, M., Wiegmann, P. B., Zabrodin, A. The 𝜏-function for analytic curves 2001 285 299

[37] Lee, S.-Y., Makarov, N. Sharpness of connectivity bounds for quadrature domains

[38] Levin, A. L. An example of a doubly connected domain which admits a quadrature identity Proc. Amer. Math. Soc. 1976

[39] Neumann, C. Über das logarithmische Potential einer gewissen Ovalfläche Abh. der math.-phys. Klasse der Königl. Sächs. Gesellsch. der Wiss. zu Leibzig 1907

[40] Neumann, C. Über das logarithmische Potential einer gewissen Ovalfläche Zweite Mitteilung 1908

[41] Polubarinova-Kochina, P. Ya. On a problem of the motion of the contour of a petroleum shell Dokl. Akad. Nauk USSR 1945

[42] Poloubarinova-Kochina, P. J. Concerning unsteady motions in the theory of filtration Appl. Math. Mech. [Akad. Nauk SSSR. Prikl. Mat. Mech.] 1945 79 90

[43] Putinar, Mihai On a class of finitely determined planar domains Math. Res. Lett. 1994 389 398

[44] Putinar, Mihai Extremal solutions of the two-dimensional 𝐿-problem of moments J. Funct. Anal. 1996 331 364

[45] Rhie, S. H. 𝑛-point gravitational lenses with 5(𝑛-1) images

[46] Richardson, S. Hele-Shaw flows with a free boundary produced by the injection of fluid into a narrow channel J. Fluid Mech. 1972

[47] Shahgholian, Henrik On quadrature domains and the Schwarz potential J. Math. Anal. Appl. 1992 61 78

[48] Saff, Edward B., Totik, Vilmos Logarithmic potentials with external fields 1997

[49] Sakai, Makoto On basic domains of extremal functions K\B{o}dai Math. Sem. Rep. 1972 251 258

[50] Sakai, Makoto Analytic functions with finite Dirichlet integrals on Riemann surfaces Acta Math. 1979 199 220

[51] Sakai, Makoto The sub-mean-value property of subharmonic functions and its application to the estimation of the Gaussian curvature of the span metric Hiroshima Math. J. 1979 555 593

[52] Sakai, Makoto Quadrature domains 1982

[53] Sakai, Makoto A moment problem on Jordan domains Proc. Amer. Math. Soc. 1978 35 38

[54] Sakai, Makoto Applications of variational inequalities to the existence theorem on quadrature domains Trans. Amer. Math. Soc. 1983 267 279

[55] Sakai, Makoto Null quadrature domains J. Analyse Math. 1981

[56] Sakai, Makoto Domains having null complex moments Complex Variables Theory Appl. 1987 313 319

[57] Sakai, Makoto Regularity of a boundary having a Schwarz function Acta Math. 1991 263 297

[58] Sakai, Makoto Small modifications of quadrature domains Mem. Amer. Math. Soc. 2010

[59] Shapiro, Harold S. The Schwarz function and its generalization to higher dimensions 1992

[60] Sheil-Small, T. Complex polynomials 2002

[61] Wiegmann, P., Zabrodin, A. Large scale correlations in normal non-Hermitian matrix ensembles J. Phys. A 2003 3411 3424

[62] Wiegmann, Paul B. Aharonov-Bohm effect in the quantum Hall regime and Laplacian growth problems 2002 337 349

[63] Wilson, George Hilbert’s sixteenth problem Topology 1978 53 73

Cité par Sources :