A restriction estimate using polynomial partitioning
Journal of the American Mathematical Society, Tome 29 (2016) no. 2, pp. 371-413

Voir la notice de l'article provenant de la source American Mathematical Society

If $S$ is a smooth compact surface in $\mathbb {R}^3$ with strictly positive second fundamental form, and $E_S$ is the corresponding extension operator, then we prove that for all $p > 3.25$, $\| E_S f\|_{L^p(\mathbb {R}^3)} \le C(p,S) \| f \|_{L^\infty (S)}$. The proof uses polynomial partitioning arguments from incidence geometry.
DOI : 10.1090/jams827

Guth, Larry 1

1 Department of Mathematics, MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
@article{10_1090_jams827,
     author = {Guth, Larry},
     title = {A restriction estimate using polynomial partitioning},
     journal = {Journal of the American Mathematical Society},
     pages = {371--413},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2016},
     doi = {10.1090/jams827},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams827/}
}
TY  - JOUR
AU  - Guth, Larry
TI  - A restriction estimate using polynomial partitioning
JO  - Journal of the American Mathematical Society
PY  - 2016
SP  - 371
EP  - 413
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams827/
DO  - 10.1090/jams827
ID  - 10_1090_jams827
ER  - 
%0 Journal Article
%A Guth, Larry
%T A restriction estimate using polynomial partitioning
%J Journal of the American Mathematical Society
%D 2016
%P 371-413
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams827/
%R 10.1090/jams827
%F 10_1090_jams827
Guth, Larry. A restriction estimate using polynomial partitioning. Journal of the American Mathematical Society, Tome 29 (2016) no. 2, pp. 371-413. doi: 10.1090/jams827

[1] Bourgain, J. Besicovitch type maximal operators and applications to Fourier analysis Geom. Funct. Anal. 1991 147 187

[2] Bourgain, Jean, Guth, Larry Bounds on oscillatory integral operators based on multilinear estimates Geom. Funct. Anal. 2011 1239 1295

[3] Bennett, Jonathan, Carbery, Anthony, Tao, Terence On the multilinear restriction and Kakeya conjectures Acta Math. 2006 261 302

[4] Chen, Xi, Kayal, Neeraj, Wigderson, Avi Partial derivatives in arithmetic complexity and beyond Found. Trends Theor. Comput. Sci. 2010

[5] Clarkson, Kenneth L., Edelsbrunner, Herbert, Guibas, Leonidas J., Sharir, Micha, Welzl, Emo Combinatorial complexity bounds for arrangements of curves and spheres Discrete Comput. Geom. 1990 99 160

[6] Cã³Rdoba, Antonio Geometric Fourier analysis Ann. Inst. Fourier (Grenoble) 1982

[7] Dvir, Zeev On the size of Kakeya sets in finite fields J. Amer. Math. Soc. 2009 1093 1097

[8] Guillemin, Victor, Pollack, Alan Differential topology 2010

[9] Guth, Larry Degree reduction and graininess for Kakeya-type sets in ℝ³

[10] Guth, Larry Distinct distance estimates and low degree polynomial partitioning

[11] Guth, Larry, Katz, Nets On the Erdős distinct distance problem in the plane

[12] Kaplan, Haim, Matouå¡Ek, Jiå™Ã­, Sharir, Micha Simple proofs of classical theorems in discrete geometry via the Guth-Katz polynomial partitioning technique Discrete Comput. Geom. 2012 499 517

[13] Matouå¡Ek, Jiå™Ã­ Using the Borsuk-Ulam theorem 2003

[14] Milnor, J. On the Betti numbers of real varieties Proc. Amer. Math. Soc. 1964 275 280

[15] Sharir, Micha The interface between computational and combinatorial geometry 2005 137 145

[16] Solymosi, Jã³Zsef, Tao, Terence An incidence theorem in higher dimensions Discrete Comput. Geom. 2012 255 280

[17] Stein, E. M. Some problems in harmonic analysis 1979 3 20

[18] Stone, A. H., Tukey, J. W. Generalized “sandwich” theorems Duke Math. J. 1942 356 359

[19] Szemerã©Di, Endre, Trotter, William T., Jr. Extremal problems in discrete geometry Combinatorica 1983 381 392

[20] Tao, Terence, Vargas, Ana, Vega, Luis A bilinear approach to the restriction and Kakeya conjectures J. Amer. Math. Soc. 1998 967 1000

[21] Tao, Terence The Bochner-Riesz conjecture implies the restriction conjecture Duke Math. J. 1999 363 375

[22] Tao, T. A sharp bilinear restrictions estimate for paraboloids Geom. Funct. Anal. 2003 1359 1384

[23] Tao, Terence

[24] Wongkew, Richard Volumes of tubular neighbourhoods of real algebraic varieties Pacific J. Math. 1993 177 184

[25] Wolff, Thomas A sharp bilinear cone restriction estimate Ann. of Math. (2) 2001 661 698

[26] Wolff, Thomas An improved bound for Kakeya type maximal functions Rev. Mat. Iberoamericana 1995 651 674

[27] Wolff, Thomas Recent work connected with the Kakeya problem 1999 129 162

[28] Wolff, T. Local smoothing type estimates on 𝐿^{𝑝} for large 𝑝 Geom. Funct. Anal. 2000 1237 1288

[29] Wolff, Thomas A Kakeya-type problem for circles Amer. J. Math. 1997 985 1026

[30] Zhang, R. Polynomials with dense zero sets and discrete models of the Kakeya conjecture and the Furstenberg set problem

Cité par Sources :