Topological Noetherianity of polynomial functors
Journal of the American Mathematical Society, Tome 32 (2019) no. 3, pp. 691-707

Voir la notice de l'article provenant de la source American Mathematical Society

We prove that any finite-degree polynomial functor over an infinite field is topologically Noetherian. This theorem is motivated by the recent resolution, by Ananyan-Hochster, of Stillman’s conjecture; and a recent Noetherianity proof by Derksen-Eggermont-Snowden for the space of cubics. Via work by Erman-Sam-Snowden, our theorem implies Stillman’s conjecture and indeed boundedness of a wider class of invariants of ideals in polynomial rings with a fixed number of generators of prescribed degrees.
DOI : 10.1090/jams/923

Draisma, Jan 1

1 Mathematisches Institut, Universität Bern, Sidlerstrasse 5, 3012 Bern; and Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
@article{10_1090_jams_923,
     author = {Draisma, Jan},
     title = {Topological {Noetherianity} of polynomial functors},
     journal = {Journal of the American Mathematical Society},
     pages = {691--707},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2019},
     doi = {10.1090/jams/923},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/923/}
}
TY  - JOUR
AU  - Draisma, Jan
TI  - Topological Noetherianity of polynomial functors
JO  - Journal of the American Mathematical Society
PY  - 2019
SP  - 691
EP  - 707
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/923/
DO  - 10.1090/jams/923
ID  - 10_1090_jams_923
ER  - 
%0 Journal Article
%A Draisma, Jan
%T Topological Noetherianity of polynomial functors
%J Journal of the American Mathematical Society
%D 2019
%P 691-707
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/923/
%R 10.1090/jams/923
%F 10_1090_jams_923
Draisma, Jan. Topological Noetherianity of polynomial functors. Journal of the American Mathematical Society, Tome 32 (2019) no. 3, pp. 691-707. doi: 10.1090/jams/923

[1] Abeasis, S., Del Fra, A. Young diagrams and ideals of Pfaffians Adv. in Math. 1980 158 178

[2] Abeasis, Silvana The 𝐺𝐿(𝑉)-invariant ideals in 𝑆(𝑆²𝑉) Rend. Mat. (6) 1980 235 262

[3] Ananyan, Tigran, Hochster, Melvin Ideals generated by quadratic polynomials Math. Res. Lett. 2012 233 244

[4] Aschenbrenner, Matthias, Hillar, Christopher J. Finite generation of symmetric ideals Trans. Amer. Math. Soc. 2007 5171 5192

[5] Church, Thomas, Ellenberg, Jordan S., Farb, Benson FI-modules and stability for representations of symmetric groups Duke Math. J. 2015 1833 1910

[6] Cohen, Daniel E. Closure relations. Buchberger’s algorithm, and polynomials in infinitely many variables 1987 78 87

[7] Derksen, Harm, Eggermont, Rob H., Snowden, Andrew Topological noetherianity for cubic polynomials Algebra Number Theory 2017 2197 2212

[8] Draisma, Jan Finiteness for the 𝑘-factor model and chirality varieties Adv. Math. 2010 243 256

[9] Draisma, Jan, Eggermont, Rob H. Plücker varieties and higher secants of Sato’s Grassmannian J. Reine Angew. Math. 2018 189 215

[10] Draisma, Jan, Kuttler, Jochen Bounded-rank tensors are defined in bounded degree Duke Math. J. 2014 35 63

[11] Draisma, Jan, Oosterhof, Florian M. Markov random fields and iterated toric fibre products Adv. in Appl. Math. 2018 64 79

[12] Eggermont, Rob H. Finiteness properties of congruence classes of infinite-by-infinite matrices Linear Algebra Appl. 2015 290 303

[13] Friedlander, Eric M., Suslin, Andrei Cohomology of finite group schemes over a field Invent. Math. 1997 209 270

[14] Landsberg, J. M., Ottaviani, Giorgio Equations for secant varieties of Veronese and other varieties Ann. Mat. Pura Appl. (4) 2013 569 606

[15] Landsberg, J. M., Manivel, L. On the ideals of secant varieties of Segre varieties Found. Comput. Math. 2004 397 422

[16] Nagpal, Rohit, Sam, Steven V., Snowden, Andrew Noetherianity of some degree two twisted commutative algebras Selecta Math. (N.S.) 2016 913 937

[17] Peeva, Irena, Stillman, Mike Open problems on syzygies and Hilbert functions J. Commut. Algebra 2009 159 195

[18] Putman, Andrew, Sam, Steven V. Representation stability and finite linear groups Duke Math. J. 2017 2521 2598

[19] Raicu, Claudiu Secant varieties of Segre-Veronese varieties Algebra Number Theory 2012 1817 1868

[20] Rauh, Johannes, Sullivant, Seth Lifting Markov bases and higher codimension toric fiber products J. Symbolic Comput. 2016 276 307

[21] Sam, Steven V. Ideals of bounded rank symmetric tensors are generated in bounded degree Invent. Math. 2017 1 21

[22] Sam, Steven V. Syzygies of bounded rank symmetric tensors are generated in bounded degree Math. Ann. 2017 1095 1108

[23] Sam, Steven V., Snowden, Andrew Gröbner methods for representations of combinatorial categories J. Amer. Math. Soc. 2017 159 203

[24] Snowden, Andrew Syzygies of Segre embeddings and Δ-modules Duke Math. J. 2013 225 277

[25] Sam, Steven V., Snowden, Andrew GL-equivariant modules over polynomial rings in infinitely many variables Trans. Amer. Math. Soc. 2016 1097 1158

Cité par Sources :