Voir la notice de l'article provenant de la source American Mathematical Society
Casals, Roger 1 ; Murphy, Emmy 2 ; Presas, Francisco 3
@article{10_1090_jams_917,
author = {Casals, Roger and Murphy, Emmy and Presas, Francisco},
title = {Geometric criteria for overtwistedness},
journal = {Journal of the American Mathematical Society},
pages = {563--604},
publisher = {mathdoc},
volume = {32},
number = {2},
year = {2019},
doi = {10.1090/jams/917},
url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/917/}
}
TY - JOUR AU - Casals, Roger AU - Murphy, Emmy AU - Presas, Francisco TI - Geometric criteria for overtwistedness JO - Journal of the American Mathematical Society PY - 2019 SP - 563 EP - 604 VL - 32 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/jams/917/ DO - 10.1090/jams/917 ID - 10_1090_jams_917 ER -
%0 Journal Article %A Casals, Roger %A Murphy, Emmy %A Presas, Francisco %T Geometric criteria for overtwistedness %J Journal of the American Mathematical Society %D 2019 %P 563-604 %V 32 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/jams/917/ %R 10.1090/jams/917 %F 10_1090_jams_917
Casals, Roger; Murphy, Emmy; Presas, Francisco. Geometric criteria for overtwistedness. Journal of the American Mathematical Society, Tome 32 (2019) no. 2, pp. 563-604. doi: 10.1090/jams/917
[1] , Symplectic geometry [ MR0842908 (88b:58044)] 2001 1 138
[2] , , Contact structures on ðÃð² Math. Ann. 2014 351 359
[3] , , Existence and classification of overtwisted contact structures in all dimensions Acta Math. 2015 281 361
[4] Odd dimensional tori are contact manifolds Int. Math. Res. Not. 2002 1571 1574
[5] , Towards a good definition of algebraically overtwisted Expo. Math. 2010 85 100
[6] , Contact homology of left-handed stabilizations and plumbing of open books Commun. Contemp. Math. 2010 223 263
[7] , Contact topology from the loose viewpoint 2016 81 115
[8] , A remark on the Reeb flow for spheres J. Symplectic Geom. 2014 657 671
[9] , On the strong orderability of overtwisted 3-folds Comment. Math. Helv. 2016 305 316
[10] , , Almost contact 5-manifolds are contact Ann. of Math. (2) 2015 429 490
[11] , , Small positive loops on overtwisted manifolds J. Symplectic Geom. 2016 1013 1031
[12] , From Stein to Weinstein and back 2012
[13] , Exotic spheres and the topology of symplectomorphism groups J. Topol. 2015 586 602
[14] , , Surgery diagrams for contact 3-manifolds Turkish J. Math. 2004 41 74
[15] , , Geometry of contact transformations and domains: orderability versus squeezing Geom. Topol. 2006 1635 1747
[16] , , Introduction to symplectic field theory Geom. Funct. Anal. 2000 560 673
[17] Classification of overtwisted contact structures on 3-manifolds Invent. Math. 1989 623 637
[18] Topological characterization of Stein manifolds of dimension >2 Internat. J. Math. 1990 29 46
[19] Classification of contact structures on ð³ Internat. Math. Res. Notices 1993 87 91
[20] Recent advances in symplectic flexibility Bull. Amer. Math. Soc. (N.S.) 2015 1 26
[21] , Introduction to the â-principle 2002
[22] , , , Lagrangian intersection Floer theory: anomaly and obstruction. Part I 2009
[23] An introduction to contact topology 2008
[24] Constructions of contact manifolds Math. Proc. Cambridge Philos. Soc. 1997 455 464
[25] Géométrie de contact: de la dimension trois vers les dimensions supérieures 2002 405 414
[26] Sur la géométrie et la dynamique des transformations de contact (dâaprès Y. Eliashberg, L. Polterovich et al.) Astérisque 2010
[27] , Existence of Lefschetz fibrations on Stein and Weinstein domains Geom. Topol. 2017 963 997
[28] Pseudo holomorphic curves in symplectic manifolds Invent. Math. 1985 307 347
[29] Partial differential relations 1986
[30] Algebraic topology 2002
[31] , , Right-veering diffeomorphisms of compact surfaces with boundary Invent. Math. 2007 427 449
[32] Quantitative embedded contact homology J. Differential Geom. 2011 231 266
[33] On plastikstufe, bordered Legendrian open book and overtwisted contact structures J. Topol. 2017 720 743
[34] Lecture notes on stabilization of contact open books Münster J. Math. 2017 425 455
[35] , Monopoles and three-manifolds 2007
[36] , , Weak and strong fillability of higher dimensional contact manifolds Invent. Math. 2013 287 373
[37] , Legendrian knots and monopoles Algebr. Geom. Topol. 2006 1 69
[38] , , , Loose Legendrians and the plastikstufe Geom. Topol. 2013 1791 1814
[39] The surgery of Lagrange submanifolds Geom. Funct. Anal. 1991 198 210
[40] The plastikstufeâa generalization of the overtwisted disk to higher dimensions Algebr. Geom. Topol. 2006 2473 2508
[41] , Some remarks on the size of tubular neighborhoods in contact topology and fillability Geom. Topol. 2010 719 754
[42] , Every contact manifolds can be given a nonfillable contact structure Int. Math. Res. Not. IMRN 2007
[43] , Surgery on contact 3-manifolds and Stein surfaces 2004 281
[44] Lagrangian two-spheres can be symplectically knotted J. Differential Geom. 1999 145 171
[45] Fukaya categories and Picard-Lefschetz theory 2008
[46] Tightness is preserved by Legendrian surgery Ann. of Math. (2) 2015 723 738
[47] Contact surgery and symplectic handlebodies Hokkaido Math. J. 1991 241 251
Cité par Sources :