Geometric criteria for overtwistedness
Journal of the American Mathematical Society, Tome 32 (2019) no. 2, pp. 563-604

Voir la notice de l'article provenant de la source American Mathematical Society

In this article we establish efficient geometric criteria to decide whether a contact manifold is overtwisted. Starting with the original definition, we first relate overtwisted disks in different dimensions and show that a manifold is overtwisted if and only if the Legendrian unknot admits a loose chart. Then we characterize overtwistedness in terms of the monodromy of open book decompositions and contact surgeries. Finally, we provide several applications of these geometric criteria.
DOI : 10.1090/jams/917

Casals, Roger 1 ; Murphy, Emmy 2 ; Presas, Francisco 3

1 Department of Mathematics, University of California Davis, Shields Avenue, Davis, California 95616
2 Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, Illinois 60208
3 Instituto de Ciencias Matemáticas CSIC, C. Nicolás Cabrera, 13 28049 Madrid, Spain
@article{10_1090_jams_917,
     author = {Casals, Roger and Murphy, Emmy and Presas, Francisco},
     title = {Geometric criteria for overtwistedness},
     journal = {Journal of the American Mathematical Society},
     pages = {563--604},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2019},
     doi = {10.1090/jams/917},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/917/}
}
TY  - JOUR
AU  - Casals, Roger
AU  - Murphy, Emmy
AU  - Presas, Francisco
TI  - Geometric criteria for overtwistedness
JO  - Journal of the American Mathematical Society
PY  - 2019
SP  - 563
EP  - 604
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/917/
DO  - 10.1090/jams/917
ID  - 10_1090_jams_917
ER  - 
%0 Journal Article
%A Casals, Roger
%A Murphy, Emmy
%A Presas, Francisco
%T Geometric criteria for overtwistedness
%J Journal of the American Mathematical Society
%D 2019
%P 563-604
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/917/
%R 10.1090/jams/917
%F 10_1090_jams_917
Casals, Roger; Murphy, Emmy; Presas, Francisco. Geometric criteria for overtwistedness. Journal of the American Mathematical Society, Tome 32 (2019) no. 2, pp. 563-604. doi: 10.1090/jams/917

[1] Arnol′D, V. I., Givental′, A. B. Symplectic geometry [ MR0842908 (88b:58044)] 2001 1 138

[2] Bowden, Jonathan, Crowley, Diarmuid, Stipsicz, Andrã¡S I. Contact structures on 𝑀×𝑆² Math. Ann. 2014 351 359

[3] Borman, Matthew Strom, Eliashberg, Yakov, Murphy, Emmy Existence and classification of overtwisted contact structures in all dimensions Acta Math. 2015 281 361

[4] Bourgeois, Frã©Dã©Ric Odd dimensional tori are contact manifolds Int. Math. Res. Not. 2002 1571 1574

[5] Bourgeois, Frã©Dã©Ric, Niederkrã¼Ger, Klaus Towards a good definition of algebraically overtwisted Expo. Math. 2010 85 100

[6] Bourgeois, Frã©Dã©Ric, Van Koert, Otto Contact homology of left-handed stabilizations and plumbing of open books Commun. Contemp. Math. 2010 223 263

[7] Casals, Roger, Murphy, Emmy Contact topology from the loose viewpoint 2016 81 115

[8] Casals, Roger, Presas, Francisco A remark on the Reeb flow for spheres J. Symplectic Geom. 2014 657 671

[9] Casals, Roger, Presas, Francisco On the strong orderability of overtwisted 3-folds Comment. Math. Helv. 2016 305 316

[10] Casals, Roger, Pancholi, Dishant M., Presas, Francisco Almost contact 5-manifolds are contact Ann. of Math. (2) 2015 429 490

[11] Casals, Roger, Presas, Francisco, Sandon, Sheila Small positive loops on overtwisted manifolds J. Symplectic Geom. 2016 1013 1031

[12] Cieliebak, Kai, Eliashberg, Yakov From Stein to Weinstein and back 2012

[13] Dimitroglou Rizell, Georgios, Evans, Jonathan David Exotic spheres and the topology of symplectomorphism groups J. Topol. 2015 586 602

[14] Ding, Fan, Geiges, Hansjã¶Rg, Stipsicz, Andrã¡S I. Surgery diagrams for contact 3-manifolds Turkish J. Math. 2004 41 74

[15] Eliashberg, Yakov, Kim, Sang Seon, Polterovich, Leonid Geometry of contact transformations and domains: orderability versus squeezing Geom. Topol. 2006 1635 1747

[16] Eliashberg, Y., Givental, A., Hofer, H. Introduction to symplectic field theory Geom. Funct. Anal. 2000 560 673

[17] Eliashberg, Y. Classification of overtwisted contact structures on 3-manifolds Invent. Math. 1989 623 637

[18] Eliashberg, Yakov Topological characterization of Stein manifolds of dimension >2 Internat. J. Math. 1990 29 46

[19] Eliashberg, Yakov Classification of contact structures on 𝐑³ Internat. Math. Res. Notices 1993 87 91

[20] Eliashberg, Yakov Recent advances in symplectic flexibility Bull. Amer. Math. Soc. (N.S.) 2015 1 26

[21] Eliashberg, Y., Mishachev, N. Introduction to the ℎ-principle 2002

[22] Fukaya, Kenji, Oh, Yong-Geun, Ohta, Hiroshi, Ono, Kaoru Lagrangian intersection Floer theory: anomaly and obstruction. Part I 2009

[23] Geiges, Hansjã¶Rg An introduction to contact topology 2008

[24] Geiges, Hansjã¶Rg Constructions of contact manifolds Math. Proc. Cambridge Philos. Soc. 1997 455 464

[25] Giroux, Emmanuel Géométrie de contact: de la dimension trois vers les dimensions supérieures 2002 405 414

[26] Giroux, Emmanuel Sur la géométrie et la dynamique des transformations de contact (d’après Y. Eliashberg, L. Polterovich et al.) Astérisque 2010

[27] Giroux, Emmanuel, Pardon, John Existence of Lefschetz fibrations on Stein and Weinstein domains Geom. Topol. 2017 963 997

[28] Gromov, M. Pseudo holomorphic curves in symplectic manifolds Invent. Math. 1985 307 347

[29] Gromov, Mikhael Partial differential relations 1986

[30] Hatcher, Allen Algebraic topology 2002

[31] Honda, Ko, Kazez, William H., Matiä‡, Gordana Right-veering diffeomorphisms of compact surfaces with boundary Invent. Math. 2007 427 449

[32] Hutchings, Michael Quantitative embedded contact homology J. Differential Geom. 2011 231 266

[33] Huang, Yang On plastikstufe, bordered Legendrian open book and overtwisted contact structures J. Topol. 2017 720 743

[34] Van Koert, Otto Lecture notes on stabilization of contact open books Münster J. Math. 2017 425 455

[35] Kronheimer, Peter, Mrowka, Tomasz Monopoles and three-manifolds 2007

[36] Massot, Patrick, Niederkrã¼Ger, Klaus, Wendl, Chris Weak and strong fillability of higher dimensional contact manifolds Invent. Math. 2013 287 373

[37] Mrowka, Tomasz, Rollin, Yann Legendrian knots and monopoles Algebr. Geom. Topol. 2006 1 69

[38] Murphy, Emmy, Niederkrã¼Ger, Klaus, Plamenevskaya, Olga, Stipsicz, Andrã¡S I. Loose Legendrians and the plastikstufe Geom. Topol. 2013 1791 1814

[39] Polterovich, L. The surgery of Lagrange submanifolds Geom. Funct. Anal. 1991 198 210

[40] Niederkrã¼Ger, Klaus The plastikstufe—a generalization of the overtwisted disk to higher dimensions Algebr. Geom. Topol. 2006 2473 2508

[41] Niederkrã¼Ger, Klaus, Presas, Francisco Some remarks on the size of tubular neighborhoods in contact topology and fillability Geom. Topol. 2010 719 754

[42] Niederkrã¼Ger, Klaus, Van Koert, Otto Every contact manifolds can be given a nonfillable contact structure Int. Math. Res. Not. IMRN 2007

[43] Ozbagci, Burak, Stipsicz, Andrã¡S I. Surgery on contact 3-manifolds and Stein surfaces 2004 281

[44] Seidel, Paul Lagrangian two-spheres can be symplectically knotted J. Differential Geom. 1999 145 171

[45] Seidel, Paul Fukaya categories and Picard-Lefschetz theory 2008

[46] Wand, Andy Tightness is preserved by Legendrian surgery Ann. of Math. (2) 2015 723 738

[47] Weinstein, Alan Contact surgery and symplectic handlebodies Hokkaido Math. J. 1991 241 251

Cité par Sources :