Multipoint distribution of periodic TASEP
Journal of the American Mathematical Society, Tome 32 (2019) no. 3, pp. 609-674
Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

The height fluctuations of the models in the KPZ class are expected to converge to a universal process. The spatial process at equal time is known to converge to the Airy process or its variations. However, the temporal process, or more generally the two-dimensional space-time fluctuation field, is less well understood. We consider this question for the periodic TASEP (totally asymmetric simple exclusion process). For a particular initial condition, we evaluate the multitime and multilocation distribution explicitly in terms of a multiple integral involving a Fredholm determinant. We then evaluate the large-time limit in the so-called relaxation time scale.
DOI : 10.1090/jams/915

Baik, Jinho  1   ; Liu, Zhipeng  2

1 Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
2 Department of Mathematics, University of Kansas, Lawrence, Kansas 66045
@article{10_1090_jams_915,
     author = {Baik, Jinho and Liu, Zhipeng},
     title = {Multipoint distribution of periodic {TASEP}},
     journal = {Journal of the American Mathematical Society},
     pages = {609--674},
     year = {2019},
     volume = {32},
     number = {3},
     doi = {10.1090/jams/915},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/915/}
}
TY  - JOUR
AU  - Baik, Jinho
AU  - Liu, Zhipeng
TI  - Multipoint distribution of periodic TASEP
JO  - Journal of the American Mathematical Society
PY  - 2019
SP  - 609
EP  - 674
VL  - 32
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/915/
DO  - 10.1090/jams/915
ID  - 10_1090_jams_915
ER  - 
%0 Journal Article
%A Baik, Jinho
%A Liu, Zhipeng
%T Multipoint distribution of periodic TASEP
%J Journal of the American Mathematical Society
%D 2019
%P 609-674
%V 32
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/915/
%R 10.1090/jams/915
%F 10_1090_jams_915
Baik, Jinho; Liu, Zhipeng. Multipoint distribution of periodic TASEP. Journal of the American Mathematical Society, Tome 32 (2019) no. 3, pp. 609-674. doi: 10.1090/jams/915

[1] Amir, Gideon, Corwin, Ivan, Quastel, Jeremy Probability distribution of the free energy of the continuum directed random polymer in 1+1 dimensions Comm. Pure Appl. Math. 2011 466 537

[2] Baik, Jinho, Deift, Percy, Johansson, Kurt On the distribution of the length of the longest increasing subsequence of random permutations J. Amer. Math. Soc. 1999 1119 1178

[3] Baik, Jinho, Ferrari, Patrik L., Péché, Sandrine Limit process of stationary TASEP near the characteristic line Comm. Pure Appl. Math. 2010 1017 1070

[4] Baik, Jinho, Liu, Zhipeng Fluctuations of TASEP on a ring in relaxation time scale Comm. Pure Appl. Math. 2018 747 813

[5] Baik, Jinho, Liu, Zhipeng TASEP on a ring in sub-relaxation time scale J. Stat. Phys. 2016 1051 1085

[6] Borodin, Alexei, Corwin, Ivan, Ferrari, Patrik Free energy fluctuations for directed polymers in random media in 1+1 dimension Comm. Pure Appl. Math. 2014 1129 1214

[7] Borodin, Alexei, Ferrari, Patrik L. Large time asymptotics of growth models on space-like paths. I. PushASEP Electron. J. Probab. 2008

[8] Borodin, Alexei, Ferrari, Patrik L., Prähofer, Michael Fluctuations in the discrete TASEP with periodic initial configurations and the 𝐴𝑖𝑟𝑦₁ process Int. Math. Res. Pap. IMRP 2007

[9] Borodin, Alexei, Ferrari, Patrik L., Prähofer, Michael, Sasamoto, Tomohiro Fluctuation properties of the TASEP with periodic initial configuration J. Stat. Phys. 2007 1055 1080

[10] Borodin, Alexei, Ferrari, Patrik L., Sasamoto, Tomohiro Transition between 𝐴𝑖𝑟𝑦₁ and 𝐴𝑖𝑟𝑦₂ processes and TASEP fluctuations Comm. Pure Appl. Math. 2008 1603 1629

[11] Corwin, Ivan The Kardar-Parisi-Zhang equation and universality class Random Matrices Theory Appl. 2012

[12] Corwin, Ivan, Ferrari, Patrik L., Péché, Sandrine Limit processes for TASEP with shocks and rarefaction fans J. Stat. Phys. 2010 232 267

[13] Corwin, Ivan, Liu, Zhipeng, Wang, Dong Fluctuations of TASEP and LPP with general initial data Ann. Appl. Probab. 2016 2030 2082

[14] De Nardis, Jacopo, Le Doussal, Pierre Tail of the two-time height distribution for KPZ growth in one dimension J. Stat. Mech. Theory Exp. 2017

[15] Derrida, Bernard, Lebowitz, Joel L. Exact large deviation function in the asymmetric exclusion process Phys. Rev. Lett. 1998 209 213

[16] Dotsenko, Victor Two-time free energy distribution function in (1+1) directed polymers J. Stat. Mech. Theory Exp. 2013

[17] Dotsenko, Victor Two-time distribution function in one-dimensional random directed polymers J. Phys. A 2015

[18] Dotsenko, Victor On two-time distribution functions in (1+1) random directed polymers J. Phys. A 2016

[19] Ferrari, Patrik L., Nejjar, Peter Anomalous shock fluctuations in TASEP and last passage percolation models Probab. Theory Related Fields 2015 61 109

[20] Ferrari, Patrik L., Spohn, Herbert On time correlations for KPZ growth in one dimension SIGMA Symmetry Integrability Geom. Methods Appl. 2016

[21] Golinelli, O., Mallick, K. Bethe ansatz calculation of the spectral gap of the asymmetric exclusion process J. Phys. A 2004 3321 3331

[22] Golinelli, O., Mallick, K. Spectral gap of the totally asymmetric exclusion process at arbitrary filling J. Phys. A 2005 1419 1425

[23] Gupta, Shamik, Majumdar, Satya N., Godrèche, Claude, Barma, Mustansir Tagged particle correlations in the asymmetric simple exclusion process: finite-size effects Phys. Rev. E (3) 2007

[24] Imamura, T., Sasamoto, T. Fluctuations of the one-dimensional polynuclear growth model with external sources Nuclear Phys. B 2004 503 544

[25] Johansson, Kurt Shape fluctuations and random matrices Comm. Math. Phys. 2000 437 476

[26] Johansson, Kurt Discrete polynuclear growth and determinantal processes Comm. Math. Phys. 2003 277 329

[27] Johansson, Kurt Two time distribution in Brownian directed percolation Comm. Math. Phys. 2017 441 492

[28] Liu, Zhipeng Height fluctuations of stationary TASEP on a ring in relaxation time scale Ann. Inst. Henri Poincaré Probab. Stat. 2018 1031 1057

[29] Poghosyan, V. S., Priezzhev, V. B. Determinant solution for the TASEP with particle-dependent hopping probabilities on a ring Markov Process. Related Fields 2008 233 254

[30] Povolotsky, A. M., Priezzhev, V. B. Determinant solution for the totally asymmetric exclusion process with parallel update. II. Ring geometry J. Stat. Mech. Theory Exp. 2007

[31] Prähofer, Michael, Spohn, Herbert Scale invariance of the PNG droplet and the Airy process J. Statist. Phys. 2002 1071 1106

[32] Rákos, A., Schütz, G. M. Current distribution and random matrix ensembles for an integrable asymmetric fragmentation process J. Stat. Phys. 2005 511 530

[33] Sasamoto, T. Spatial correlations of the 1D KPZ surface on a flat substrate J. Phys. A 2005

[34] Schütz, Gunter M. Exact solution of the master equation for the asymmetric exclusion process J. Statist. Phys. 1997 427 445

[35] Tracy, Craig A., Widom, Harold Asymptotics in ASEP with step initial condition Comm. Math. Phys. 2009 129 154

Cité par Sources :