A smooth mixing flow on a surface with nondegenerate fixed points
Journal of the American Mathematical Society, Tome 32 (2019) no. 1, pp. 81-117

Voir la notice de l'article provenant de la source American Mathematical Society

We construct a smooth, area preserving, mixing flow with finitely many nondegenerate fixed points and no saddle connections on a closed surface of genus $5$. This resolves a problem that has been open for four decades.
DOI : 10.1090/jams/911

Chaika, Jon 1 ; Wright, Alex 2, 3

1 Department of Mathematics, University of Utah, 155 S 1400 E, Room 233, Salt Lake City, Utah 84112
2 Department of Mathematics, Stanford University, Palo Alto, California 94305
3 University of Michigan, Department of Mathematics, 2074 East Hall, 530 Church Street, Ann Arbor, Michigan 48109-1043
@article{10_1090_jams_911,
     author = {Chaika, Jon and Wright, Alex},
     title = {A smooth mixing flow on a surface with nondegenerate fixed points},
     journal = {Journal of the American Mathematical Society},
     pages = {81--117},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2019},
     doi = {10.1090/jams/911},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/911/}
}
TY  - JOUR
AU  - Chaika, Jon
AU  - Wright, Alex
TI  - A smooth mixing flow on a surface with nondegenerate fixed points
JO  - Journal of the American Mathematical Society
PY  - 2019
SP  - 81
EP  - 117
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/911/
DO  - 10.1090/jams/911
ID  - 10_1090_jams_911
ER  - 
%0 Journal Article
%A Chaika, Jon
%A Wright, Alex
%T A smooth mixing flow on a surface with nondegenerate fixed points
%J Journal of the American Mathematical Society
%D 2019
%P 81-117
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/911/
%R 10.1090/jams/911
%F 10_1090_jams_911
Chaika, Jon; Wright, Alex. A smooth mixing flow on a surface with nondegenerate fixed points. Journal of the American Mathematical Society, Tome 32 (2019) no. 1, pp. 81-117. doi: 10.1090/jams/911

[1] Arnol′D, V. I. Topological and ergodic properties of closed 1-forms with incommensurable periods Funktsional. Anal. i Prilozhen. 1991

[2] Blohin, A. A. Smooth ergodic flows on surfaces Trudy Moskov. Mat. Obšč. 1972 113 128

[3] Conze, Jean-Pierre, Fraì§Czek, Krzysztof Cocycles over interval exchange transformations and multivalued Hamiltonian flows Adv. Math. 2011 4373 4428

[4] Cheung, Yitwah, Hubert, Pascal, Masur, Howard Dichotomy for the Hausdorff dimension of the set of nonergodic directions Invent. Math. 2011 337 383

[5] Fayad, Bassam Smooth mixing flows with purely singular spectra Duke Math. J. 2006 371 391

[6] Fayad, Bassam, Kanigowski, Adam Multiple mixing for a class of conservative surface flows Invent. Math. 2016 555 614

[7] Frä…Czek, K., Lemaå„Czyk, M. On symmetric logarithm and some old examples in smooth ergodic theory Fund. Math. 2003 241 255

[8] Frä…Czek, K., Lemaå„Czyk, M. A class of special flows over irrational rotations which is disjoint from mixing flows Ergodic Theory Dynam. Systems 2004 1083 1095

[9] Frä…Czek, Krzysztof, Lemaå„Czyk, Mariusz On disjointness properties of some smooth flows Fund. Math. 2005 117 142

[10] Frä…Czek, K., Lemaå„Czyk, M. On mild mixing of special flows over irrational rotations under piecewise smooth functions Ergodic Theory Dynam. Systems 2006 719 738

[11] Frä…Czek, K., Lemaå„Czyk, M. Smooth singular flows in dimension 2 with the minimal self-joining property Monatsh. Math. 2009 11 45

[12] Forni, Giovanni Deviation of ergodic averages for area-preserving flows on surfaces of higher genus Ann. of Math. (2) 2002 1 103

[13] Herman, Michael-Robert Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations Inst. Hautes Études Sci. Publ. Math. 1979 5 233

[14] Katok, A. B. Spectral properties of dynamical systems with an integral invariant on the torus Funkcional. Anal. i Priložen. 1967 46 56

[15] Katok, A. B. Invariant measures of flows on orientable surfaces Dokl. Akad. Nauk SSSR 1973 775 778

[16] Katok, Anatole Interval exchange transformations and some special flows are not mixing Israel J. Math. 1980 301 310

[17] Khinchin, A. Ya. Continued fractions 1964

[18] Kanigowski, Adam, Kuå‚Aga-Przymus, Joanna Ratner’s property and mild mixing for smooth flows on surfaces Ergodic Theory Dynam. Systems 2016 2512 2537

[19] KoäErgin, A. V. The absence of mixing in special flows over a rotation of the circle and in flows on a two-dimensional torus Dokl. Akad. Nauk SSSR 1972 515 518

[20] KoäErgin, A. V. Mixing in special flows over a rearrangement of segments and in smooth flows on surfaces Mat. Sb. (N.S.) 1975

[21] KoäErgin, A. V. Nondegenerate saddles, and the absence of mixing Mat. Zametki 1976 453 468

[22] Kochergin, A. V. A mixing special flow over a rotation of the circle with an almost Lipschitz function Mat. Sb. 2002 51 78

[23] Kochergin, A. V. Nondegenerate fixed points and mixing in flows on a two-dimensional torus Mat. Sb. 2003 83 112

[24] Kochergin, A. Well-approximable angles and mixing for flows on 𝕋² with nonsingular fixed points Electron. Res. Announc. Amer. Math. Soc. 2004 113 121

[25] Kochergin, A. V. Hölder time change and the mixing rate in a flow on a two-dimensional torus Tr. Mat. Inst. Steklova 2004 216 248

[26] Kochergin, A. V. Nondegenerate fixed points and mixing in flows on a two-dimensional torus. II Mat. Sb. 2004 15 46

[27] Kochergin, A. V. Some generalizations of theorems on mixing flows with nondegenerate saddles on a two-dimensional torus Mat. Sb. 2004 19 36

[28] Kochergin, A. V. Nondegenerate saddles, and absence of mixing. II Mat. Zametki 2007 145 148

[29] Kochergin, Andrey Causes of stretching of Birkhoff sums and mixing in flows on surfaces 2007 129 144

[30] Kolmogorov, A. N. On dynamical systems with an integral invariant on the torus Doklady Akad. Nauk SSSR (N.S.) 1953 763 766

[31] Katok, A. B., Sinaä­, Ja. G., Stepin, A. M. The theory of dynamical systems and general transformation groups with invariant measure 1975

[32] Katok, Anatole, Thouvenot, Jean-Paul Spectral properties and combinatorial constructions in ergodic theory 2006 649 743

[33] Lemaå„Czyk, M. Sur l’absence de mélange pour des flots spéciaux au-dessus d’une rotation irrationnelle Colloq. Math. 2000 29 41

[34] Masur, Howard Interval exchange transformations and measured foliations Ann. of Math. (2) 1982 169 200

[35] Novikov, S. P. The Hamiltonian formalism and a multivalued analogue of Morse theory Uspekhi Mat. Nauk 1982

[36] Ostrowski, Alexander Bemerkungen zur Theorie der Diophantischen Approximationen Abh. Math. Sem. Univ. Hamburg 1922 77 98

[37] Ravotti, Davide Quantitative mixing for locally Hamiltonian flows with saddle loops on compact surfaces Ann. Henri Poincaré 2017 3815 3861

[38] Sataev, E. A. The number of invariant measures for flows on orientable surfaces Izv. Akad. Nauk SSSR Ser. Mat. 1975 860 878

[39] Scheglov, Dmitri Absence of mixing for smooth flows on genus two surfaces J. Mod. Dyn. 2009 13 34

[40] Sinaä­, Ya. G., Khanin, K. M. Mixing of some classes of special flows over rotations of the circle Funktsional. Anal. i Prilozhen. 1992 1 21

[41] Treviã±O, Rodrigo On the ergodicity of flat surfaces of finite area Geom. Funct. Anal. 2014 360 386

[42] Ulcigrai, Corinna Mixing of asymmetric logarithmic suspension flows over interval exchange transformations Ergodic Theory Dynam. Systems 2007 991 1035

[43] Ulcigrai, Corinna Weak mixing for logarithmic flows over interval exchange transformations J. Mod. Dyn. 2009 35 49

[44] Ulcigrai, Corinna Absence of mixing in area-preserving flows on surfaces Ann. of Math. (2) 2011 1743 1778

[45] Veech, William A. Strict ergodicity in zero dimensional dynamical systems and the Kronecker-Weyl theorem 𝑚𝑜𝑑2 Trans. Amer. Math. Soc. 1969 1 33

[46] Veech, William A. Gauss measures for transformations on the space of interval exchange maps Ann. of Math. (2) 1982 201 242

[47] Von Neumann, J. Zur Operatorenmethode in der klassischen Mechanik Ann. of Math. (2) 1932 587 642

Cité par Sources :