A Darboux theorem for derived schemes with shifted symplectic structure
Journal of the American Mathematical Society, Tome 32 (2019) no. 2, pp. 399-443

Voir la notice de l'article provenant de la source American Mathematical Society

We prove a Darboux theorem for derived schemes with symplectic forms of degree $k0$, in the sense of Pantev, Toën, Vaquié, and Vezzosi. More precisely, we show that a derived scheme $\mathbfit{X}$ with symplectic form $\tilde {\omega }$ of degree $k$ is locally equivalent to $(\operatorname{Spec} A,\omega)$ for $\operatorname{Spec} A$ an affine derived scheme in which the cdga $A$ has Darboux-like coordinates with respect to which the symplectic form $\omega$ is standard, and in which the differential in $A$ is given by a Poisson bracket with a Hamiltonian function $\Phi$ of degree $k+1$. When $k=-1$, this implies that a $-1$-shifted symplectic derived scheme $(\mathbfit{X},\tilde {\omega })$ is Zariski locally equivalent to the derived critical locus $\operatorname{Crit}(\Phi )$ of a regular function $\Phi :U\rightarrow {\mathbb A}^1$ on a smooth scheme $U$. We use this to show that the classical scheme $X=t_0(\mathbfit{X})$ has the structure of an algebraic d-critical locus, in the sense of Joyce. In a series of works, the authors and their collaborators extend these results to (derived) Artin stacks, and discuss a Lagrangian neighbourhood theorem for shifted symplectic derived schemes, and applications to categorified and motivic Donaldson–Thomas theory of Calabi–Yau 3-folds, and to defining new Donaldson–Thomas type invariants of Calabi–Yau 4-folds, and to defining Fukaya categories of Lagrangians in algebraic symplectic manifolds using perverse sheaves.
DOI : 10.1090/jams/910

Brav, Christopher 1 ; Bussi, Vittoria 2 ; Joyce, Dominic 3

1 Faculty of Mathematics, Higher School of Economics, 7 Vavilova Street, Moscow, Russia
2 ICTP, Strada Costiera 11, Trieste, Italy
3 The Mathematical Institute, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, United Kingdom
@article{10_1090_jams_910,
     author = {Brav, Christopher and Bussi, Vittoria and Joyce, Dominic},
     title = {A {Darboux} theorem for derived schemes with shifted symplectic structure},
     journal = {Journal of the American Mathematical Society},
     pages = {399--443},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2019},
     doi = {10.1090/jams/910},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/910/}
}
TY  - JOUR
AU  - Brav, Christopher
AU  - Bussi, Vittoria
AU  - Joyce, Dominic
TI  - A Darboux theorem for derived schemes with shifted symplectic structure
JO  - Journal of the American Mathematical Society
PY  - 2019
SP  - 399
EP  - 443
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/910/
DO  - 10.1090/jams/910
ID  - 10_1090_jams_910
ER  - 
%0 Journal Article
%A Brav, Christopher
%A Bussi, Vittoria
%A Joyce, Dominic
%T A Darboux theorem for derived schemes with shifted symplectic structure
%J Journal of the American Mathematical Society
%D 2019
%P 399-443
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/910/
%R 10.1090/jams/910
%F 10_1090_jams_910
Brav, Christopher; Bussi, Vittoria; Joyce, Dominic. A Darboux theorem for derived schemes with shifted symplectic structure. Journal of the American Mathematical Society, Tome 32 (2019) no. 2, pp. 399-443. doi: 10.1090/jams/910

[1] Behrend, Kai Donaldson-Thomas type invariants via microlocal geometry Ann. of Math. (2) 2009 1307 1338

[2] Behrend, K., Fantechi, B. The intrinsic normal cone Invent. Math. 1997 45 88

[3] Ben-Bassat, Oren, Brav, Christopher, Bussi, Vittoria, Joyce, Dominic A ‘Darboux theorem’ for shifted symplectic structures on derived Artin stacks, with applications Geom. Topol. 2015 1287 1359

[4] Ben-Zvi, David, Nadler, David Loop spaces and connections J. Topol. 2012 377 430

[5] Borisov, Dennis, Joyce, Dominic Virtual fundamental classes for moduli spaces of sheaves on Calabi-Yau four-folds Geom. Topol. 2017 3231 3311

[6] Brav, C., Bussi, V., Dupont, D., Joyce, D., Szendrå‘I, B. Symmetries and stabilization for sheaves of vanishing cycles J. Singul. 2015 85 151

[7] Emmanouil, Ioannis The cyclic homology of affine algebras Invent. Math. 1995 1 19

[8] Gelfand, Sergei I., Manin, Yuri I. Methods of homological algebra 2003

[9] Goerss, Paul, Schemmerhorn, Kristen Model categories and simplicial methods 2007 3 49

[10] Goodwillie, Thomas G. Cyclic homology, derivations, and the free loopspace Topology 1985 187 215

[11] Hess, Kathryn Rational homotopy theory: a brief introduction 2007 175 202

[12] Huybrechts, Daniel, Thomas, Richard P. Deformation-obstruction theory for complexes via Atiyah and Kodaira-Spencer classes Math. Ann. 2010 545 569

[13] Joyce, Dominic A classical model for derived critical loci J. Differential Geom. 2015 289 367

[14] Joyce, Dominic, Song, Yinan A theory of generalized Donaldson-Thomas invariants Mem. Amer. Math. Soc. 2012

[15] Kontsevich, Maxim, Soibelman, Yan Motivic Donaldson-Thomas invariants: summary of results 2010 55 89

[16] Kontsevich, Maxim, Soibelman, Yan Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants Commun. Number Theory Phys. 2011 231 352

[17] Loday, Jean-Louis Cyclic homology 1992

[18] Pantev, Tony, Toã«N, Bertrand, Vaquiã©, Michel, Vezzosi, Gabriele Shifted symplectic structures Publ. Math. Inst. Hautes Études Sci. 2013 271 328

[19] Schã¼Rg, Timo, Toã«N, Bertrand, Vezzosi, Gabriele Derived algebraic geometry, determinants of perfect complexes, and applications to obstruction theories for maps and complexes J. Reine Angew. Math. 2015 1 40

[20] Thomas, R. P. A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on 𝐾3 fibrations J. Differential Geom. 2000 367 438

[21] Toã«N, Bertrand Higher and derived stacks: a global overview 2009 435 487

[22] Toã«N, Bertrand, Vezzosi, Gabriele Homotopical algebraic geometry. II. Geometric stacks and applications Mem. Amer. Math. Soc. 2008

[23] Toã«N, Bertrand, Vezzosi, Gabriele From HAG to DAG: derived moduli stacks 2004 173 216

[24] Toã«N, Bertrand, Vezzosi, Gabriele Algèbres simpliciales 𝑆¹-équivariantes, théorie de de Rham et théorèmes HKR multiplicatifs Compos. Math. 2011 1979 2000

Cité par Sources :