An improved bound on the Hausdorff dimension of Besicovitch sets in ℝ³
Journal of the American Mathematical Society, Tome 32 (2019) no. 1, pp. 195-259

Voir la notice de l'article provenant de la source American Mathematical Society

We prove that every Besicovitch set in $\mathbb {R}^3$ must have Hausdorff dimension at least $5/2+\epsilon _0$ for some small constant $\epsilon _0>0$. This follows from a more general result about the volume of unions of tubes that satisfies the Wolff axioms. Our proof grapples with a new “almost counterexample” to the Kakeya conjecture, which we call the $\operatorname {SL}_2$ example; this object resembles a Besicovitch set that has Minkowski dimension 3 but Hausdorff dimension $5/2$. We believe this example may be an interesting object for future study.
DOI : 10.1090/jams/907

Katz, Nets 1 ; Zahl, Joshua 2

1 California Institute of Technology, Pasadena, California 91125
2 University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
@article{10_1090_jams_907,
     author = {Katz, Nets and Zahl, Joshua},
     title = {An improved bound on the {Hausdorff} dimension of {Besicovitch} sets in {\^a„\^A{\textthreesuperior}}},
     journal = {Journal of the American Mathematical Society},
     pages = {195--259},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2019},
     doi = {10.1090/jams/907},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/907/}
}
TY  - JOUR
AU  - Katz, Nets
AU  - Zahl, Joshua
TI  - An improved bound on the Hausdorff dimension of Besicovitch sets in ℝ³
JO  - Journal of the American Mathematical Society
PY  - 2019
SP  - 195
EP  - 259
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/907/
DO  - 10.1090/jams/907
ID  - 10_1090_jams_907
ER  - 
%0 Journal Article
%A Katz, Nets
%A Zahl, Joshua
%T An improved bound on the Hausdorff dimension of Besicovitch sets in ℝ³
%J Journal of the American Mathematical Society
%D 2019
%P 195-259
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/907/
%R 10.1090/jams/907
%F 10_1090_jams_907
Katz, Nets; Zahl, Joshua. An improved bound on the Hausdorff dimension of Besicovitch sets in ℝ³. Journal of the American Mathematical Society, Tome 32 (2019) no. 1, pp. 195-259. doi: 10.1090/jams/907

[1] Bennett, Jonathan, Carbery, Anthony, Tao, Terence On the multilinear restriction and Kakeya conjectures Acta Math. 2006 261 302

[2] Bourgain, Jean The discretized sum-product and projection theorems J. Anal. Math. 2010 193 236

[3] Bourgain, J. Besicovitch type maximal operators and applications to Fourier analysis Geom. Funct. Anal. 1991 147 187

[4] Bourgain, Jean, Guth, Larry Bounds on oscillatory integral operators based on multilinear estimates Geom. Funct. Anal. 2011 1239 1295

[5] Bourgain, J., Katz, N., Tao, T. A sum-product estimate in finite fields, and applications Geom. Funct. Anal. 2004 27 57

[6] Davies, Roy O. Some remarks on the Kakeya problem Proc. Cambridge Philos. Soc. 1971 417 421

[7] Guth, Larry Degree reduction and graininess for Kakeya-type sets in ℝ³ Rev. Mat. Iberoam. 2016 447 494

[8] Guth, Larry, Katz, Nets Hawk On the Erdős distinct distances problem in the plane Ann. of Math. (2) 2015 155 190

[9] Hilbert, D., Cohn-Vossen, S. Geometry and the imagination 1952

[10] Katz, Nets Hawk, ŁAba, Izabella, Tao, Terence An improved bound on the Minkowski dimension of Besicovitch sets in 𝑅³ Ann. of Math. (2) 2000 383 446

[11] Katz, Nets, Tao, Terence Recent progress on the Kakeya conjecture Publ. Mat. 2002 161 179

[12] Tao, Terence, Vu, Van Additive combinatorics 2006

[13] Wolff, Thomas An improved bound for Kakeya type maximal functions Rev. Mat. Iberoamericana 1995 651 674

[14] Wolff, Thomas A mixed norm estimate for the X-ray transform Rev. Mat. Iberoamericana 1998 561 600

[15] Wolff, Thomas Recent work connected with the Kakeya problem 1999 129 162

[16] Wongkew, Richard Volumes of tubular neighbourhoods of real algebraic varieties Pacific J. Math. 1993 177 184

Cité par Sources :