Quantitative null-cobordism
Journal of the American Mathematical Society, Tome 31 (2018) no. 4, pp. 1165-1203

Voir la notice de l'article provenant de la source American Mathematical Society

For a given null-cobordant Riemannian $n$-manifold, how does the minimal geometric complexity of a null-cobordism depend on the geometric complexity of the manifold? Gromov has conjectured that this dependence should be linear. We show that it is at most a polynomial whose degree depends on $n$. In the appendix the bound is improved to one that is $O(L^{1+\varepsilon })$ for every $\varepsilon >0$. This construction relies on another of independent interest. Take $X$ and $Y$ to be sufficiently nice compact metric spaces, such as Riemannian manifolds or simplicial complexes. Suppose $Y$ is simply connected and rationally homotopy equivalent to a product of Eilenberg–MacLane spaces, for example, any simply connected Lie group. Then two homotopic $L$-Lipschitz maps $f,g:X \to Y$ are homotopic via a $CL$-Lipschitz homotopy. We present a counterexample to show that this is not true for larger classes of spaces $Y$.
DOI : 10.1090/jams/903

Chambers, Gregory 1 ; Dotterrer, Dominic 2 ; Manin, Fedor 3 ; Weinberger, Shmuel 4

1 Department of Mathematics, Rice University, Houston, Texas 77005
2 Department of Computer Science, Stanford University, Stanford, California 94305
3 Department of Mathematics, Ohio State University, Columbus, Ohio 43210
4 Department of Mathematics, University of Chicago, Chicago, Illinois 60637
@article{10_1090_jams_903,
     author = {Chambers, Gregory and Dotterrer, Dominic and Manin, Fedor and Weinberger, Shmuel},
     title = {Quantitative null-cobordism},
     journal = {Journal of the American Mathematical Society},
     pages = {1165--1203},
     publisher = {mathdoc},
     volume = {31},
     number = {4},
     year = {2018},
     doi = {10.1090/jams/903},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/903/}
}
TY  - JOUR
AU  - Chambers, Gregory
AU  - Dotterrer, Dominic
AU  - Manin, Fedor
AU  - Weinberger, Shmuel
TI  - Quantitative null-cobordism
JO  - Journal of the American Mathematical Society
PY  - 2018
SP  - 1165
EP  - 1203
VL  - 31
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/903/
DO  - 10.1090/jams/903
ID  - 10_1090_jams_903
ER  - 
%0 Journal Article
%A Chambers, Gregory
%A Dotterrer, Dominic
%A Manin, Fedor
%A Weinberger, Shmuel
%T Quantitative null-cobordism
%J Journal of the American Mathematical Society
%D 2018
%P 1165-1203
%V 31
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/903/
%R 10.1090/jams/903
%F 10_1090_jams_903
Chambers, Gregory; Dotterrer, Dominic; Manin, Fedor; Weinberger, Shmuel. Quantitative null-cobordism. Journal of the American Mathematical Society, Tome 31 (2018) no. 4, pp. 1165-1203. doi: 10.1090/jams/903

[1] Amann, Herbert Uniformly regular and singular Riemannian manifolds 2015 1 43

[2] Baues, Hans J. Obstruction theory on homotopy classification of maps 1977

[3] Boissonnat, Jean-Daniel, Dyer, Ramsay, Ghosh, Arijit Delaunay triangulation of manifolds Found. Comput. Math. 2018 399 431

[4] Buoncristiano, Sandro, Hacon, Derek An elementary geometric proof of two theorems of Thom Topology 1981 97 99

[5] Chambers, Gregory R., Manin, Fedor, Weinberger, Shmuel Quantitative nullhomotopy and rational homotopy type Geom. Funct. Anal. 2018 563 588

[6] Cheeger, Jeff, Gromov, Mikhael On the characteristic numbers of complete manifolds of bounded curvature and finite volume 1985 115 154

[7] Cheeger, Jeff Finiteness theorems for Riemannian manifolds Amer. J. Math. 1970 61 74

[8] Costantino, Francesco, Thurston, Dylan 3-manifolds efficiently bound 4-manifolds J. Topol. 2008 703 745

[9] Duval, Art M., Klivans, Caroline J., Martin, Jeremy L. Simplicial matrix-tree theorems Trans. Amer. Math. Soc. 2009 6073 6114

[10] Duval, Art M., Klivans, Caroline J., Martin, Jeremy L. Cellular spanning trees and Laplacians of cubical complexes Adv. in Appl. Math. 2011 247 274

[11] Disconzi, Marcelo, Shao, Yuanzhen, Simonett, Gieri Some remarks on uniformly regular Riemannian manifolds Math. Nachr. 2016 232 242

[12] Edelsbrunner, H., Grayson, D. R. Edgewise subdivision of a simplex Discrete Comput. Geom. 2000 707 719

[13] Eichhorn, Jã¼Rgen The boundedness of connection coefficients and their derivatives Math. Nachr. 1991 145 158

[14] Evra, Shai, Kaufman, Tali Bounded degree cosystolic expanders of every dimension 2016 36 48

[15] Epstein, David B. A., Cannon, James W., Holt, Derek F., Levy, Silvio V. F., Paterson, Michael S., Thurston, William P. Word processing in groups 1992

[16] Federer, Herbert, Fleming, Wendell H. Normal and integral currents Ann. of Math. (2) 1960 458 520

[17] Fã©Lix, Yves, Halperin, Stephen, Thomas, Jean-Claude Rational homotopy theory 2001

[18] Ferry, Steve, Weinberger, Shmuel Quantitative algebraic topology and Lipschitz homotopy Proc. Natl. Acad. Sci. USA 2013 19246 19250

[19] Gromov, Misha, Guth, Larry Generalizations of the Kolmogorov-Barzdin embedding estimates Duke Math. J. 2012 2549 2603

[20] Griffiths, Phillip A., Morgan, John W. Rational homotopy theory and differential forms 1981

[21] Gromov, M. Positive curvature, macroscopic dimension, spectral gaps and higher signatures 1996 1 213

[22] Hatcher, Allen Algebraic topology 2002

[23] Hirsch, Morris W. Differential topology 1976

[24] Hildebrandt, Stã©Fan, Kaul, Helmut, Widman, Kjell-Ove An existence theorem for harmonic mappings of Riemannian manifolds Acta Math. 1977 1 16

[25] Kalai, Gil Enumeration of 𝑄-acyclic simplicial complexes Israel J. Math. 1983 337 351

[26] Klaus, Stephan, Kreck, Matthias A quick proof of the rational Hurewicz theorem and a computation of the rational homotopy groups of spheres Math. Proc. Cambridge Philos. Soc. 2004 617 623

[27] Milnor, John W., Stasheff, James D. Characteristic classes 1974

[28] Peters, Stefan Cheeger’s finiteness theorem for diffeomorphism classes of Riemannian manifolds J. Reine Angew. Math. 1984 77 82

[29] Rourke, C. P., Sanderson, B. J. Introduction to piecewise-linear topology 1972

[30] Schick, Thomas Manifolds with boundary and of bounded geometry Math. Nachr. 2001 103 120

[31] Spanier, Edwin H. Algebraic topology 1981

[32] Sullivan, Dennis Genetics of homotopy theory and the Adams conjecture Ann. of Math. (2) 1974 1 79

Cité par Sources :