Voir la notice de l'article provenant de la source American Mathematical Society
Chambers, Gregory 1 ; Dotterrer, Dominic 2 ; Manin, Fedor 3 ; Weinberger, Shmuel 4
@article{10_1090_jams_903,
     author = {Chambers, Gregory and Dotterrer, Dominic and Manin, Fedor and Weinberger, Shmuel},
     title = {Quantitative null-cobordism},
     journal = {Journal of the American Mathematical Society},
     pages = {1165--1203},
     publisher = {mathdoc},
     volume = {31},
     number = {4},
     year = {2018},
     doi = {10.1090/jams/903},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/903/}
}
                      
                      
                    TY - JOUR AU - Chambers, Gregory AU - Dotterrer, Dominic AU - Manin, Fedor AU - Weinberger, Shmuel TI - Quantitative null-cobordism JO - Journal of the American Mathematical Society PY - 2018 SP - 1165 EP - 1203 VL - 31 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/jams/903/ DO - 10.1090/jams/903 ID - 10_1090_jams_903 ER -
%0 Journal Article %A Chambers, Gregory %A Dotterrer, Dominic %A Manin, Fedor %A Weinberger, Shmuel %T Quantitative null-cobordism %J Journal of the American Mathematical Society %D 2018 %P 1165-1203 %V 31 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/jams/903/ %R 10.1090/jams/903 %F 10_1090_jams_903
Chambers, Gregory; Dotterrer, Dominic; Manin, Fedor; Weinberger, Shmuel. Quantitative null-cobordism. Journal of the American Mathematical Society, Tome 31 (2018) no. 4, pp. 1165-1203. doi: 10.1090/jams/903
[1] Uniformly regular and singular Riemannian manifolds 2015 1 43
[2] Obstruction theory on homotopy classification of maps 1977
[3] , , Delaunay triangulation of manifolds Found. Comput. Math. 2018 399 431
[4] , An elementary geometric proof of two theorems of Thom Topology 1981 97 99
[5] , , Quantitative nullhomotopy and rational homotopy type Geom. Funct. Anal. 2018 563 588
[6] , On the characteristic numbers of complete manifolds of bounded curvature and finite volume 1985 115 154
[7] Finiteness theorems for Riemannian manifolds Amer. J. Math. 1970 61 74
[8] , 3-manifolds efficiently bound 4-manifolds J. Topol. 2008 703 745
[9] , , Simplicial matrix-tree theorems Trans. Amer. Math. Soc. 2009 6073 6114
[10] , , Cellular spanning trees and Laplacians of cubical complexes Adv. in Appl. Math. 2011 247 274
[11] , , Some remarks on uniformly regular Riemannian manifolds Math. Nachr. 2016 232 242
[12] , Edgewise subdivision of a simplex Discrete Comput. Geom. 2000 707 719
[13] The boundedness of connection coefficients and their derivatives Math. Nachr. 1991 145 158
[14] , Bounded degree cosystolic expanders of every dimension 2016 36 48
[15] , , , , , Word processing in groups 1992
[16] , Normal and integral currents Ann. of Math. (2) 1960 458 520
[17] , , Rational homotopy theory 2001
[18] , Quantitative algebraic topology and Lipschitz homotopy Proc. Natl. Acad. Sci. USA 2013 19246 19250
[19] , Generalizations of the Kolmogorov-Barzdin embedding estimates Duke Math. J. 2012 2549 2603
[20] , Rational homotopy theory and differential forms 1981
[21] Positive curvature, macroscopic dimension, spectral gaps and higher signatures 1996 1 213
[22] Algebraic topology 2002
[23] Differential topology 1976
[24] , , An existence theorem for harmonic mappings of Riemannian manifolds Acta Math. 1977 1 16
[25] Enumeration of ð-acyclic simplicial complexes Israel J. Math. 1983 337 351
[26] , A quick proof of the rational Hurewicz theorem and a computation of the rational homotopy groups of spheres Math. Proc. Cambridge Philos. Soc. 2004 617 623
[27] , Characteristic classes 1974
[28] Cheegerâs finiteness theorem for diffeomorphism classes of Riemannian manifolds J. Reine Angew. Math. 1984 77 82
[29] , Introduction to piecewise-linear topology 1972
[30] Manifolds with boundary and of bounded geometry Math. Nachr. 2001 103 120
[31] Algebraic topology 1981
[32] Genetics of homotopy theory and the Adams conjecture Ann. of Math. (2) 1974 1 79
Cité par Sources :
