Khovanov homology from Floer cohomology
Journal of the American Mathematical Society, Tome 32 (2019) no. 1, pp. 1-79

Voir la notice de l'article provenant de la source American Mathematical Society

This paper realises the Khovanov homology of a link in $S^3$ as a Lagrangian Floer cohomology group, establishing a conjecture of Seidel and the second author. The starting point is the previously established formality theorem for the symplectic arc algebra over a field $\mathbf {k}$ of characteristic zero. Here we prove the symplectic cup and cap bimodules, which relate different symplectic arc algebras, are themselves formal over $\mathbf {k}$, and we construct a long exact triangle for symplectic Khovanov cohomology. We then prove the symplectic and combinatorial arc algebras are isomorphic over $\mathbb {Z}$ in a manner compatible with the cup bimodules. It follows that Khovanov cohomology and symplectic Khovanov cohomology co-incide in characteristic zero.
DOI : 10.1090/jams/902

Abouzaid, Mohammed 1 ; Smith, Ivan 2

1 Department of Mathematics, Columbia University, 2990 Broadway, New York, New York 10027
2 Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WB, England
@article{10_1090_jams_902,
     author = {Abouzaid, Mohammed and Smith, Ivan},
     title = {Khovanov homology from {Floer} cohomology},
     journal = {Journal of the American Mathematical Society},
     pages = {1--79},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2019},
     doi = {10.1090/jams/902},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/902/}
}
TY  - JOUR
AU  - Abouzaid, Mohammed
AU  - Smith, Ivan
TI  - Khovanov homology from Floer cohomology
JO  - Journal of the American Mathematical Society
PY  - 2019
SP  - 1
EP  - 79
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/902/
DO  - 10.1090/jams/902
ID  - 10_1090_jams_902
ER  - 
%0 Journal Article
%A Abouzaid, Mohammed
%A Smith, Ivan
%T Khovanov homology from Floer cohomology
%J Journal of the American Mathematical Society
%D 2019
%P 1-79
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/902/
%R 10.1090/jams/902
%F 10_1090_jams_902
Abouzaid, Mohammed; Smith, Ivan. Khovanov homology from Floer cohomology. Journal of the American Mathematical Society, Tome 32 (2019) no. 1, pp. 1-79. doi: 10.1090/jams/902

[1] Abouzaid, Mohammed Morse homology, tropical geometry, and homological mirror symmetry for toric varieties Selecta Math. (N.S.) 2009 189 270

[2] Abouzaid, Mohammed A topological model for the Fukaya categories of plumbings J. Differential Geom. 2011 1 80

[3] Abouzaid, Mohammed, Seidel, Paul An open string analogue of Viterbo functoriality Geom. Topol. 2010 627 718

[4] Abouzaid, Mohammed, Smith, Ivan The symplectic arc algebra is formal Duke Math. J. 2016 985 1060

[5] Auroux, Denis Fukaya categories of symmetric products and bordered Heegaard-Floer homology J. Gökova Geom. Topol. GGT 2010 1 54

[6] Banyaga, Augustin, Hurtubise, David E. Cascades and perturbed Morse-Bott functions Algebr. Geom. Topol. 2013 237 275

[7] Beauville, Arnaud Variétés Kähleriennes dont la première classe de Chern est nulle J. Differential Geom. 1983

[8] Biran, Paul, Cornea, Octav A Lagrangian quantum homology 2009 1 44

[9] Biran, Paul, Cornea, Octav Lagrangian cobordism and Fukaya categories Geom. Funct. Anal. 2014 1731 1830

[10] Biran, Paul, Cornea, Octav Cone-decompositions of Lagrangian cobordisms in Lefschetz fibrations Selecta Math. (N.S.) 2017 2635 2704

[11] Cappell, Sylvain E., Lee, Ronnie, Miller, Edward Y. On the Maslov index Comm. Pure Appl. Math. 1994 121 186

[12] Cautis, Sabin, Kamnitzer, Joel Knot homology via derived categories of coherent sheaves. I. The 𝔰𝔩(2)-case Duke Math. J. 2008 511 588

[13] Cautis, Sabin, Kamnitzer, Joel Knot homology via derived categories of coherent sheaves IV, coloured links Quantum Topol. 2017 381 411

[14] Cieliebak, Kai, Eliashberg, Yakov From Stein to Weinstein and back 2012

[15] Deng, Bo The Šil′nikov problem, exponential expansion, strong 𝜆-lemma, 𝐶¹-linearization, and homoclinic bifurcation J. Differential Equations 1989 189 231

[16] Drinfeld, Vladimir DG quotients of DG categories J. Algebra 2004 643 691

[17] Fukaya, Kenji, Oh, Yong-Geun Zero-loop open strings in the cotangent bundle and Morse homotopy Asian J. Math. 1997 96 180

[18] Ganatra, Sheel Symplectic Cohomology and Duality for the Wrapped Fukaya Category 2012

[19] Kamnitzer, Joel The Beilinson-Drinfeld Grassmannian and symplectic knot homology 2011 81 94

[20] Kasturirangan, Rajesh, Oh, Yong-Geun Floer homology of open subsets and a relative version of Arnold’s conjecture Math. Z. 2001 151 189

[21] Keating, Ailsa M. Dehn twists and free subgroups of symplectic mapping class groups J. Topol. 2014 436 474

[22] Khovanov, Mikhail A categorification of the Jones polynomial Duke Math. J. 2000 359 426

[23] Khovanov, Mikhail A functor-valued invariant of tangles Algebr. Geom. Topol. 2002 665 741

[24] Khovanov, Mikhail Crossingless matchings and the cohomology of (𝑛,𝑛) Springer varieties Commun. Contemp. Math. 2004 561 577

[25] Khovanov, Mikhail, Seidel, Paul Quivers, Floer cohomology, and braid group actions J. Amer. Math. Soc. 2002 203 271

[26] Lyubashenko, Volodymyr, Ovsienko, Sergiy A construction of quotient 𝐴_{∞}-categories Homology Homotopy Appl. 2006 157 203

[27] Manolescu, Ciprian Nilpotent slices, Hilbert schemes, and the Jones polynomial Duke Math. J. 2006 311 369

[28] Nadler, David, Zaslow, Eric Constructible sheaves and the Fukaya category J. Amer. Math. Soc. 2009 233 286

[29] Oh, Yong-Geun Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. I Comm. Pure Appl. Math. 1993 949 993

[30] Ozsvã¡Th, Peter S., Rasmussen, Jacob, Szabã³, Zoltã¡N Odd Khovanov homology Algebr. Geom. Topol. 2013 1465 1488

[31] Polterovich, L. The surgery of Lagrange submanifolds Geom. Funct. Anal. 1991 198 210

[32] Poåºniak, Marcin Floer homology, Novikov rings and clean intersections 1999 119 181

[33] Rezazadegan, Reza Seidel-Smith cohomology for tangles Selecta Math. (N.S.) 2009 487 518

[34] Rezazadegan, Reza Pseudoholomorphic quilts and Khovanov homology 2009 100

[35] Russell, Heather M., Tymoczko, Julianna S. Springer representations on the Khovanov Springer varieties Math. Proc. Cambridge Philos. Soc. 2011 59 81

[36] Seidel, Paul Lectures on four-dimensional Dehn twists 2008 231 267

[37] Seidel, Paul A long exact sequence for symplectic Floer cohomology Topology 2003 1003 1063

[38] Seidel, Paul Graded Lagrangian submanifolds Bull. Soc. Math. France 2000 103 149

[39] Seidel, Paul A biased view of symplectic cohomology 2008 211 253

[40] Sikorav, Jean-Claude Some properties of holomorphic curves in almost complex manifolds 1994 165 189

[41] Seidel, Paul 𝐴_{∞}-subalgebras and natural transformations Homology Homotopy Appl. 2008 83 114

[42] Seidel, Paul Fukaya categories and Picard-Lefschetz theory 2008

[43] Seidel, Paul Homological mirror symmetry for the genus two curve J. Algebraic Geom. 2011 727 769

[44] Seidel, Paul Fukaya 𝐴_{∞}-structures associated to Lefschetz fibrations. I J. Symplectic Geom. 2012 325 388

[45] Seidel, Paul Fukaya 𝐴_{∞}-structures associated to Lefschetz fibrations. II 2017 295 364

[46] Seidel, Paul, Smith, Ivan A link invariant from the symplectic geometry of nilpotent slices Duke Math. J. 2006 453 514

[47] Sheridan, Nick Homological mirror symmetry for Calabi-Yau hypersurfaces in projective space Invent. Math. 2015 1 186

[48] Slodowy, Peter Simple singularities and simple algebraic groups 1980

[49] Stroppel, Catharina, Webster, Ben 2-block Springer fibers: convolution algebras and coherent sheaves Comment. Math. Helv. 2012 477 520

[50] Wehrheim, Katrin, Woodward, Chris T. Quilted Floer cohomology Geom. Topol. 2010 833 902

[51] Wehrheim, Katrin, Woodward, Chris T. Exact triangle for fibered Dehn twists Res. Math. Sci. 2016

Cité par Sources :