Langlands correspondence for isocrystals and the existence of crystalline companions for curves
Journal of the American Mathematical Society, Tome 31 (2018) no. 4, pp. 921-1057

Voir la notice de l'article provenant de la source American Mathematical Society

In this paper, we show the Langlands correspondence for isocrystals on curves, which asserts the existence of crystalline companions in the case of curves. For the proof we generalize the theory of arithmetic $\mathscr {D}$-modules to algebraic stacks whose diagonal morphisms are finite. Finally, combining with methods of Deligne and Drinfeld, we show the existence of an “$\ell$-adic companion” for any isocrystal on a smooth scheme of any dimension under the assumption of a Bertini-type conjecture.
DOI : 10.1090/jams/898

Abe, Tomoyuki 1

1 Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8583, Japan
@article{10_1090_jams_898,
     author = {Abe, Tomoyuki},
     title = {Langlands correspondence for isocrystals and the existence of crystalline companions for curves},
     journal = {Journal of the American Mathematical Society},
     pages = {921--1057},
     publisher = {mathdoc},
     volume = {31},
     number = {4},
     year = {2018},
     doi = {10.1090/jams/898},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/898/}
}
TY  - JOUR
AU  - Abe, Tomoyuki
TI  - Langlands correspondence for isocrystals and the existence of crystalline companions for curves
JO  - Journal of the American Mathematical Society
PY  - 2018
SP  - 921
EP  - 1057
VL  - 31
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/898/
DO  - 10.1090/jams/898
ID  - 10_1090_jams_898
ER  - 
%0 Journal Article
%A Abe, Tomoyuki
%T Langlands correspondence for isocrystals and the existence of crystalline companions for curves
%J Journal of the American Mathematical Society
%D 2018
%P 921-1057
%V 31
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/898/
%R 10.1090/jams/898
%F 10_1090_jams_898
Abe, Tomoyuki. Langlands correspondence for isocrystals and the existence of crystalline companions for curves. Journal of the American Mathematical Society, Tome 31 (2018) no. 4, pp. 921-1057. doi: 10.1090/jams/898

[1] Abe, Tomoyuki Explicit calculation of Frobenius isomorphisms and Poincaré duality in the theory of arithmetic 𝒟-modules Rend. Semin. Mat. Univ. Padova 2014 89 149

[2] Abe, Tomoyuki Langlands program for 𝑝-adic coefficients and the petits camarades conjecture J. Reine Angew. Math. 2018 59 69

[3] Abe, Tomoyuki, Marmora, Adriano Product formula for 𝑝-adic epsilon factors J. Inst. Math. Jussieu 2015 275 377

[4] Behrend, Kai A. Derived 𝑙-adic categories for algebraic stacks Mem. Amer. Math. Soc. 2003

[5] Beä­Linson, A. A. On the derived category of perverse sheaves 1987 27 41

[6] Beä­Linson, A. A., Bernstein, J., Deligne, P. Faisceaux pervers 1982 5 171

[7] Berthelot, Pierre 𝒟-modules arithmétiques. I. Opérateurs différentiels de niveau fini Ann. Sci. École Norm. Sup. (4) 1996 185 272

[8] Berthelot, Pierre 𝒟-modules arithmétiques. II. Descente par Frobenius Mém. Soc. Math. Fr. (N.S.) 2000

[9] Berthelot, Pierre Introduction à la théorie arithmétique des 𝒟-modules Astérisque 2002 1 80

[10] Caro, Daniel Comparaison des foncteurs duaux des isocristaux surconvergents Rend. Sem. Mat. Univ. Padova 2005

[11] Caro, Daniel 𝒟-modules arithmétiques surholonomes Ann. Sci. Éc. Norm. Supér. (4) 2009 141 192

[12] Caro, Daniel 𝒟-modules arithmétiques associés aux isocristaux surconvergents. Cas lisse Bull. Soc. Math. France 2009 453 543

[13] Caro, Daniel Sur la compatibilité à Frobenius de l’isomorphisme de dualité relative Rend. Semin. Mat. Univ. Padova 2009 235 286

[14] Caro, Daniel Pleine fidélité sans structure de Frobenius et isocristaux partiellement surconvergents Math. Ann. 2011 747 805

[15] Caro, Daniel Sur la stabilité par produit tensoriel de complexes de 𝒟-modules arithmétiques Manuscripta Math. 2015 1 41

[16] Caro, Daniel, Tsuzuki, Nobuo Overholonomicity of overconvergent 𝐹-isocrystals over smooth varieties Ann. of Math. (2) 2012 747 813

[17] Chiarellotto, Bruno Weights in rigid cohomology applications to unipotent 𝐹-isocrystals Ann. Sci. École Norm. Sup. (4) 1998 683 715

[18] Conrad, Brian, Lieblich, Max, Olsson, Martin Nagata compactification for algebraic spaces J. Inst. Math. Jussieu 2012 747 814

[19] Crew, Richard 𝐹-isocrystals and their monodromy groups Ann. Sci. École Norm. Sup. (4) 1992 429 464

[20] Deligne, Pierre La conjecture de Weil. II Inst. Hautes Études Sci. Publ. Math. 1980 137 252

[21] Deligne, P. Le groupe fondamental de la droite projective moins trois points 1989 79 297

[22] Drinfeld, Vladimir On a conjecture of Deligne Mosc. Math. J. 2012

[23] Esnault, Hã©Lã¨Ne, Kerz, Moritz A finiteness theorem for Galois representations of function fields over finite fields (after Deligne) Acta Math. Vietnam. 2012 531 562

[24] ÉTesse, Jean-Yves, Le Stum, Bernard Fonctions 𝐿 associées aux 𝐹-isocristaux surconvergents. I. Interprétation cohomologique Math. Ann. 1993 557 576

[25] Etingof, Pavel, Gelaki, Shlomo, Nikshych, Dmitri, Ostrik, Victor Tensor categories 2015

[26] Grothendieck, A. Éléments de géométrie algébrique. I. Le langage des schémas Inst. Hautes Études Sci. Publ. Math. 1960 228

[27] Grothendieck, A. Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes Inst. Hautes Études Sci. Publ. Math. 1961 222

[28] Grothendieck, A. Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I Inst. Hautes Études Sci. Publ. Math. 1964 259

[29] Fujiwara, Kazuhiro Independence of 𝑙 for intersection cohomology (after Gabber) 2002 145 151

[30] Fulton, William Intersection theory 1984

[31] Gabriel, Pierre Des catégories abéliennes Bull. Soc. Math. France 1962 323 448

[32] Gillet, Henri Riemann-Roch theorems for higher algebraic 𝐾-theory Adv. in Math. 1981 203 289

[33] Giraud, Jean Méthode de la descente Bull. Soc. Math. France Mém. 1964

[34] Grothendieck, Alexander Sur quelques points d’algèbre homologique Tohoku Math. J. (2) 1957 119 221

[35] Hartshorne, Robin Residues and duality 1966

[36] Huyghe, Christine 𝒟^{†}(∞)-affinité des schémas projectifs Ann. Inst. Fourier (Grenoble) 1998 913 956

[37] Illusie, Luc Crystalline cohomology 1994 43 70

[38] Kashiwara, Masaki 𝑡-structures on the derived categories of holonomic 𝒟-modules and coherent 𝒪-modules Mosc. Math. J. 2004

[39] Kashiwara, Masaki, Schapira, Pierre Categories and sheaves 2006

[40] Kato, Kazuya, Saito, Takeshi Ramification theory for varieties over a perfect field Ann. of Math. (2) 2008 33 96

[41] Kedlaya, Kiran S. Full faithfulness for overconvergent 𝐹-isocrystals 2004 819 835

[42] Kedlaya, Kiran S. Fourier transforms and 𝑝-adic ‘Weil II’ Compos. Math. 2006 1426 1450

[43] Kedlaya, Kiran S. 𝑝-adic cohomology 2009 667 684

[44] Kedlaya, Kiran S. Semistable reduction for overconvergent 𝐹-isocrystals. I. Unipotence and logarithmic extensions Compos. Math. 2007 1164 1212

[45] Kedlaya, Kiran S. Semistable reduction for overconvergent 𝐹-isocrystals, IV: local semistable reduction at nonmonomial valuations Compos. Math. 2011 467 523

[46] Kiehl, Reinhardt, Weissauer, Rainer Weil conjectures, perverse sheaves and 𝑙’adic Fourier transform 2001

[47] Kresch, Andrew Cycle groups for Artin stacks Invent. Math. 1999 495 536

[48] Lafforgue, Laurent Chtoucas de Drinfeld et conjecture de Ramanujan-Petersson Astérisque 1997

[49] Lafforgue, Laurent Chtoucas de Drinfeld et correspondance de Langlands Invent. Math. 2002 1 241

[50] Laszlo, Yves, Olsson, Martin The six operations for sheaves on Artin stacks. I. Finite coefficients Publ. Math. Inst. Hautes Études Sci. 2008 109 168

[51] Laumon, Gã©Rard, Moret-Bailly, Laurent Champs algébriques 2000

[52] Le Stum, Bernard Constructible ∇-modules on curves Selecta Math. (N.S.) 2014 627 674

[53] Nori, Madhav V. Constructible sheaves 2002 471 491

[54] Olsson, Martin C. Logarithmic geometry and algebraic stacks Ann. Sci. École Norm. Sup. (4) 2003 747 791

[55] Olsson, Martin C. On proper coverings of Artin stacks Adv. Math. 2005 93 106

[56] Olsson, Martin Sheaves on Artin stacks J. Reine Angew. Math. 2007 55 112

[57] Shiho, Atsushi Cut-by-curves criterion for the log extendability of overconvergent isocrystals Math. Z. 2011 59 82

[58] Revêtements étales et groupe fondamental (SGA 1) 2003

[59] Schémas en groupes. I: Propriétés générales des schémas en groupes 1970

[60] Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos 1972

[61] Deligne, P. Cohomologie étale 1977

[62] Tsuzuki, Nobuo Morphisms of 𝐹-isocrystals and the finite monodromy theorem for unit-root 𝐹-isocrystals Duke Math. J. 2002 385 418

[63] Virrion, Anne Trace et dualité relative pour les 𝒟-modules arithmétiques 2004 1039 1112

[64] Virrion, Anne Dualité locale et holonomie pour les 𝒟-modules arithmétiques Bull. Soc. Math. France 2000 1 68

Cité par Sources :