Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_jams_898,
author = {Abe, Tomoyuki},
title = {Langlands correspondence for isocrystals and the existence of crystalline companions for curves},
journal = {Journal of the American Mathematical Society},
pages = {921--1057},
publisher = {mathdoc},
volume = {31},
number = {4},
year = {2018},
doi = {10.1090/jams/898},
url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/898/}
}
TY - JOUR AU - Abe, Tomoyuki TI - Langlands correspondence for isocrystals and the existence of crystalline companions for curves JO - Journal of the American Mathematical Society PY - 2018 SP - 921 EP - 1057 VL - 31 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/jams/898/ DO - 10.1090/jams/898 ID - 10_1090_jams_898 ER -
%0 Journal Article %A Abe, Tomoyuki %T Langlands correspondence for isocrystals and the existence of crystalline companions for curves %J Journal of the American Mathematical Society %D 2018 %P 921-1057 %V 31 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/jams/898/ %R 10.1090/jams/898 %F 10_1090_jams_898
Abe, Tomoyuki. Langlands correspondence for isocrystals and the existence of crystalline companions for curves. Journal of the American Mathematical Society, Tome 31 (2018) no. 4, pp. 921-1057. doi: 10.1090/jams/898
[1] Explicit calculation of Frobenius isomorphisms and Poincaré duality in the theory of arithmetic ð-modules Rend. Semin. Mat. Univ. Padova 2014 89 149
[2] Langlands program for ð-adic coefficients and the petits camarades conjecture J. Reine Angew. Math. 2018 59 69
[3] , Product formula for ð-adic epsilon factors J. Inst. Math. Jussieu 2015 275 377
[4] Derived ð-adic categories for algebraic stacks Mem. Amer. Math. Soc. 2003
[5] On the derived category of perverse sheaves 1987 27 41
[6] , , Faisceaux pervers 1982 5 171
[7] ð-modules arithmétiques. I. Opérateurs différentiels de niveau fini Ann. Sci. Ãcole Norm. Sup. (4) 1996 185 272
[8] ð-modules arithmétiques. II. Descente par Frobenius Mém. Soc. Math. Fr. (N.S.) 2000
[9] Introduction à la théorie arithmétique des ð-modules Astérisque 2002 1 80
[10] Comparaison des foncteurs duaux des isocristaux surconvergents Rend. Sem. Mat. Univ. Padova 2005
[11] ð-modules arithmétiques surholonomes Ann. Sci. Ãc. Norm. Supér. (4) 2009 141 192
[12] ð-modules arithmétiques associés aux isocristaux surconvergents. Cas lisse Bull. Soc. Math. France 2009 453 543
[13] Sur la compatibilité à Frobenius de lâisomorphisme de dualité relative Rend. Semin. Mat. Univ. Padova 2009 235 286
[14] Pleine fidélité sans structure de Frobenius et isocristaux partiellement surconvergents Math. Ann. 2011 747 805
[15] Sur la stabilité par produit tensoriel de complexes de ð-modules arithmétiques Manuscripta Math. 2015 1 41
[16] , Overholonomicity of overconvergent ð¹-isocrystals over smooth varieties Ann. of Math. (2) 2012 747 813
[17] Weights in rigid cohomology applications to unipotent ð¹-isocrystals Ann. Sci. Ãcole Norm. Sup. (4) 1998 683 715
[18] , , Nagata compactification for algebraic spaces J. Inst. Math. Jussieu 2012 747 814
[19] ð¹-isocrystals and their monodromy groups Ann. Sci. Ãcole Norm. Sup. (4) 1992 429 464
[20] La conjecture de Weil. II Inst. Hautes Ãtudes Sci. Publ. Math. 1980 137 252
[21] Le groupe fondamental de la droite projective moins trois points 1989 79 297
[22] On a conjecture of Deligne Mosc. Math. J. 2012
[23] , A finiteness theorem for Galois representations of function fields over finite fields (after Deligne) Acta Math. Vietnam. 2012 531 562
[24] , Fonctions ð¿ associées aux ð¹-isocristaux surconvergents. I. Interprétation cohomologique Math. Ann. 1993 557 576
[25] , , , Tensor categories 2015
[26] Ãléments de géométrie algébrique. I. Le langage des schémas Inst. Hautes Ãtudes Sci. Publ. Math. 1960 228
[27] Ãléments de géométrie algébrique. II. Ãtude globale élémentaire de quelques classes de morphismes Inst. Hautes Ãtudes Sci. Publ. Math. 1961 222
[28] Ãléments de géométrie algébrique. IV. Ãtude locale des schémas et des morphismes de schémas. I Inst. Hautes Ãtudes Sci. Publ. Math. 1964 259
[29] Independence of ð for intersection cohomology (after Gabber) 2002 145 151
[30] Intersection theory 1984
[31] Des catégories abéliennes Bull. Soc. Math. France 1962 323 448
[32] Riemann-Roch theorems for higher algebraic ð¾-theory Adv. in Math. 1981 203 289
[33] Méthode de la descente Bull. Soc. Math. France Mém. 1964
[34] Sur quelques points dâalgèbre homologique Tohoku Math. J. (2) 1957 119 221
[35] Residues and duality 1966
[36] ð^{â }(â)-affinité des schémas projectifs Ann. Inst. Fourier (Grenoble) 1998 913 956
[37] Crystalline cohomology 1994 43 70
[38] ð¡-structures on the derived categories of holonomic ð-modules and coherent ðª-modules Mosc. Math. J. 2004
[39] , Categories and sheaves 2006
[40] , Ramification theory for varieties over a perfect field Ann. of Math. (2) 2008 33 96
[41] Full faithfulness for overconvergent ð¹-isocrystals 2004 819 835
[42] Fourier transforms and ð-adic âWeil IIâ Compos. Math. 2006 1426 1450
[43] ð-adic cohomology 2009 667 684
[44] Semistable reduction for overconvergent ð¹-isocrystals. I. Unipotence and logarithmic extensions Compos. Math. 2007 1164 1212
[45] Semistable reduction for overconvergent ð¹-isocrystals, IV: local semistable reduction at nonmonomial valuations Compos. Math. 2011 467 523
[46] , Weil conjectures, perverse sheaves and ðâadic Fourier transform 2001
[47] Cycle groups for Artin stacks Invent. Math. 1999 495 536
[48] Chtoucas de Drinfeld et conjecture de Ramanujan-Petersson Astérisque 1997
[49] Chtoucas de Drinfeld et correspondance de Langlands Invent. Math. 2002 1 241
[50] , The six operations for sheaves on Artin stacks. I. Finite coefficients Publ. Math. Inst. Hautes Ãtudes Sci. 2008 109 168
[51] , Champs algébriques 2000
[52] Constructible â-modules on curves Selecta Math. (N.S.) 2014 627 674
[53] Constructible sheaves 2002 471 491
[54] Logarithmic geometry and algebraic stacks Ann. Sci. Ãcole Norm. Sup. (4) 2003 747 791
[55] On proper coverings of Artin stacks Adv. Math. 2005 93 106
[56] Sheaves on Artin stacks J. Reine Angew. Math. 2007 55 112
[57] Cut-by-curves criterion for the log extendability of overconvergent isocrystals Math. Z. 2011 59 82
[58] Revêtements étales et groupe fondamental (SGA 1) 2003
[59] Schémas en groupes. I: Propriétés générales des schémas en groupes 1970
[60] Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos 1972
[61] Cohomologie étale 1977
[62] Morphisms of ð¹-isocrystals and the finite monodromy theorem for unit-root ð¹-isocrystals Duke Math. J. 2002 385 418
[63] Trace et dualité relative pour les ð-modules arithmétiques 2004 1039 1112
[64] Dualité locale et holonomie pour les ð-modules arithmétiques Bull. Soc. Math. France 2000 1 68
Cité par Sources :