A proof of the shuffle conjecture
Journal of the American Mathematical Society, Tome 31 (2018) no. 3, pp. 661-697

Voir la notice de l'article provenant de la source American Mathematical Society

We present a proof of the compositional shuffle conjecture by Haglund, Morse and Zabrocki [Canad. J. Math., 64 (2012), 822–844], which generalizes the famous shuffle conjecture for the character of the diagonal coinvariant algebra by Haglund, Haiman, Loehr, Remmel, and Ulyanov [Duke Math. J., 126 (2005), 195–232]. We first formulate the combinatorial side of the conjecture in terms of certain operators on a graded vector space $V_*$ whose degree zero part is the ring of symmetric functions $\operatorname {Sym}[X]$ over $\mathbb {Q}(q,t)$. We then extend these operators to an action of an algebra $\tilde {\mathbb A}$ acting on this space, and interpret the right generalization of the $\nabla$ using an involution of the algebra which is antilinear with respect to the conjugation $(q,t)\mapsto (q^{-1},t^{-1})$.
DOI : 10.1090/jams/893

Carlsson, Erik 1, 2 ; Mellit, Anton 3, 4

1 International Centre for Theoretical Physics, Str. Costiera, 11, 34151 Trieste, Italy
2 Department of Mathematics, University of California, Davis, 1 Shields Ave., Davis, California 95616
3 International Centre for Theoretical Physics, Str. Costiera, 11, 34151 Trieste, Italy
4 Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
@article{10_1090_jams_893,
     author = {Carlsson, Erik and Mellit, Anton},
     title = {A proof of the shuffle conjecture},
     journal = {Journal of the American Mathematical Society},
     pages = {661--697},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {2018},
     doi = {10.1090/jams/893},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/893/}
}
TY  - JOUR
AU  - Carlsson, Erik
AU  - Mellit, Anton
TI  - A proof of the shuffle conjecture
JO  - Journal of the American Mathematical Society
PY  - 2018
SP  - 661
EP  - 697
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/893/
DO  - 10.1090/jams/893
ID  - 10_1090_jams_893
ER  - 
%0 Journal Article
%A Carlsson, Erik
%A Mellit, Anton
%T A proof of the shuffle conjecture
%J Journal of the American Mathematical Society
%D 2018
%P 661-697
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/893/
%R 10.1090/jams/893
%F 10_1090_jams_893
Carlsson, Erik; Mellit, Anton. A proof of the shuffle conjecture. Journal of the American Mathematical Society, Tome 31 (2018) no. 3, pp. 661-697. doi: 10.1090/jams/893

[1] Bergeron, F., Garsia, A. M., Haiman, M., Tesler, G. Identities and positivity conjectures for some remarkable operators in the theory of symmetric functions Methods Appl. Anal. 1999 363 420

[2] Bergeron, Francois, Garsia, Adriano, Sergel Leven, Emily, Xin, Guoce Compositional (𝑘𝑚,𝑘𝑛)-shuffle conjectures Int. Math. Res. Not. IMRN 2016 4229 4270

[3] Bridgeland, Tom, King, Alastair, Reid, Miles The McKay correspondence as an equivalence of derived categories J. Amer. Math. Soc. 2001 535 554

[4] Egge, E. S., Haglund, J., Killpatrick, K., Kremer, D. A Schröder generalization of Haglund’s statistic on Catalan paths Electron. J. Combin. 2003

[5] Garsia, A. M., Haiman, M. A remarkable 𝑞,𝑡-Catalan sequence and 𝑞-Lagrange inversion J. Algebraic Combin. 1996 191 244

[6] Garsia, A. M., Haglund, J. A proof of the 𝑞,𝑡-Catalan positivity conjecture Discrete Math. 2002 677 717

[7] Garsia, A. M., Haiman, M., Tesler, G. Explicit plethystic formulas for Macdonald 𝑞,𝑡-Kostka coefficients Sém. Lothar. Combin. 1999

[8] Gorsky, Eugene, Neguå£, Andrei Refined knot invariants and Hilbert schemes J. Math. Pures Appl. (9) 2015 403 435

[9] Gorsky, Eugene, Oblomkov, Alexei, Rasmussen, Jacob, Shende, Vivek Torus knots and the rational DAHA Duke Math. J. 2014 2709 2794

[10] Garsia, A. M., Xin, G., Zabrocki, M. Hall-Littlewood operators in the theory of parking functions and diagonal harmonics Int. Math. Res. Not. IMRN 2012 1264 1299

[11] Haglund, J. Conjectured statistics for the 𝑞,𝑡-Catalan numbers Adv. Math. 2003 319 334

[12] Haglund, James The 𝑞,𝑡-Catalan numbers and the space of diagonal harmonics 2008

[13] Haiman, Mark Hilbert schemes, polygraphs and the Macdonald positivity conjecture J. Amer. Math. Soc. 2001 941 1006

[14] Haiman, Mark Vanishing theorems and character formulas for the Hilbert scheme of points in the plane Invent. Math. 2002 371 407

[15] Haglund, J., Haiman, M., Loehr, N. A combinatorial formula for Macdonald polynomials J. Amer. Math. Soc. 2005 735 761

[16] Haglund, J., Haiman, M., Loehr, N., Remmel, J. B., Ulyanov, A. A combinatorial formula for the character of the diagonal coinvariants Duke Math. J. 2005 195 232

[17] Hicks, Angela S. Two parking function bijections: a sharpening of the 𝑞, 𝑡-Catalan and Shröder theorems Int. Math. Res. Not. IMRN 2012 3064 3088

[18] Hikita, Tatsuyuki Affine Springer fibers of type 𝐴 and combinatorics of diagonal coinvariants Adv. Math. 2014 88 122

[19] Haglund, J., Loehr, N. A conjectured combinatorial formula for the Hilbert series for diagonal harmonics Discrete Math. 2005 189 204

[20] Haglund, J., Morse, J., Zabrocki, M. A compositional shuffle conjecture specifying touch points of the Dyck path Canad. J. Math. 2012 822 844

[21] Loehr, Nicholas A., Niese, Elizabeth New combinatorial formulations of the shuffle conjecture Adv. in Appl. Math. 2014 22 47

[22] Macdonald, I. G. Symmetric functions and Hall polynomials 1995

[23] Negut, Andrei The shuffle algebra revisited Int. Math. Res. Not. IMRN 2014 6242 6275

[24] Schiffmann, O., Vasserot, E. The elliptic Hall algebra, Cherednik Hecke algebras and Macdonald polynomials Compos. Math. 2011 188 234

[25] Schiffmann, Olivier, Vasserot, Eric The elliptic Hall algebra and the 𝐾-theory of the Hilbert scheme of 𝔸² Duke Math. J. 2013 279 366

Cité par Sources :