@article{10_1090_jams_892,
author = {Fr\'econ, Olivier},
title = {Simple groups of {Morley} rank 3 are algebraic},
journal = {Journal of the American Mathematical Society},
pages = {643--659},
year = {2018},
volume = {31},
number = {3},
doi = {10.1090/jams/892},
url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/892/}
}
Frécon, Olivier. Simple groups of Morley rank 3 are algebraic. Journal of the American Mathematical Society, Tome 31 (2018) no. 3, pp. 643-659. doi: 10.1090/jams/892
[1] , , Simple groups of finite Morley rank 2008
[2] An almost strongly minimal non-Desarguesian projective plane Trans. Amer. Math. Soc. 1994 695 711
[3] , , On function field Mordell-Lang and Manin-Mumford J. Math. Log. 2016
[4] , Simple groups of finite Morley rank without nonnilpotent connected subgroups 1990
[5] , Groups of finite Morley rank 1994
[6] Groups of small Morley rank Ann. Math. Logic 1979 1 28
[7] Bad groups of finite Morley rank J. Symbolic Logic 1989 768 773
[8] Foundations of projective geometry 1967
[9] The Mordell-Lang conjecture for function fields J. Amer. Math. Soc. 1996 667 690
[10] Full Frobenius groups of finite Morley rank and the Feit-Thompson theorem Bull. Symbolic Logic 2001 315 328
[11] , Existentially closed CSA-groups J. Algebra 2004 772 796
[12] , Sous-groupes superstables de 𝑆𝐿₂(𝐾) et de 𝑃𝑆𝐿₂(𝐾) J. Algebra 2006 155 167
[13] Nonsolvable groups of Morley rank 3 J. Algebra 1989 199 218
[14] On bad groups, bad fields, and pseudoplanes J. Symbolic Logic 1991 915 931
[15] O-minimality and the André-Oort conjecture for ℂⁿ Ann. of Math. (2) 2011 1779 1840
[16] Groupes stables 1987
[17] Milieu et symétrie, une étude de la convexité dans les groupes sans involutions 2017
[18] The classification of the simple periodic linear groups Arch. Math. (Basel) 1983 103 116
[19] Bad groups 2017
[20] Groups and rings whose theory is categorical Fund. Math. 1977 173 188
Cité par Sources :