Canonical bases for cluster algebras
Journal of the American Mathematical Society, Tome 31 (2018) no. 2, pp. 497-608 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

In an earlier work (Publ. Inst. Hautes Études Sci., 122 (2015), 65–168) the first three authors conjectured that the ring of regular functions on a natural class of affine log Calabi–Yau varieties (those with maximal boundary) has a canonical vector space basis parameterized by the integral tropical points of the mirror. Further, the structure constants for the multiplication rule in this basis should be given by counting broken lines (certain combinatorial objects, morally the tropicalizations of holomorphic discs). Here we prove the conjecture in the case of cluster varieties, where the statement is a more precise form of the Fock–Goncharov dual basis conjecture (Publ. Inst. Hautes Études Sci., 103 (2006), 1–211). In particular, under suitable hypotheses, for each $Y$ the partial compactification of an affine cluster variety $U$ given by allowing some frozen variables to vanish, we obtain canonical bases for $H^0(Y,\mathcal {O}_Y)$ extending to a basis of $H^0(U,\mathcal {O}_U)$. Each choice of seed canonically identifies the parameterizing sets of these bases with integral points in a polyhedral cone. These results specialize to basis results of combinatorial representation theory. For example, by considering the open double Bruhat cell $U$ in the basic affine space $Y,$ we obtain a canonical basis of each irreducible representation of $\operatorname {SL}_r$, parameterized by a set which each choice of seed identifies with the integral points of a lattice polytope. These bases and polytopes are all constructed essentially without representation-theoretic considerations. Along the way, our methods prove a number of conjectures in cluster theory, including positivity of the Laurent phenomenon for cluster algebras of geometric type.
DOI : 10.1090/jams/890

Gross, Mark 1 ; Hacking, Paul 2 ; Keel, Sean 3 ; Kontsevich, Maxim 4

1 DPMMS, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 0WB, United Kingdom
2 Department of Mathematics and Statistics, Lederle Graduate Research Tower, University of Massachusetts, Amherst, Massachusetts 01003-9305
3 Department of Mathematics, 1 University Station C1200, Austin, Texas 78712-0257
4 IHÉS, Le Bois-Marie 35, route de Chartres, 91440 Bures-sur-Yvette, France
@article{10_1090_jams_890,
     author = {Gross, Mark and Hacking, Paul and Keel, Sean and Kontsevich, Maxim},
     title = {Canonical bases for cluster algebras},
     journal = {Journal of the American Mathematical Society},
     pages = {497--608},
     year = {2018},
     volume = {31},
     number = {2},
     doi = {10.1090/jams/890},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/890/}
}
TY  - JOUR
AU  - Gross, Mark
AU  - Hacking, Paul
AU  - Keel, Sean
AU  - Kontsevich, Maxim
TI  - Canonical bases for cluster algebras
JO  - Journal of the American Mathematical Society
PY  - 2018
SP  - 497
EP  - 608
VL  - 31
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/890/
DO  - 10.1090/jams/890
ID  - 10_1090_jams_890
ER  - 
%0 Journal Article
%A Gross, Mark
%A Hacking, Paul
%A Keel, Sean
%A Kontsevich, Maxim
%T Canonical bases for cluster algebras
%J Journal of the American Mathematical Society
%D 2018
%P 497-608
%V 31
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/890/
%R 10.1090/jams/890
%F 10_1090_jams_890
Gross, Mark; Hacking, Paul; Keel, Sean; Kontsevich, Maxim. Canonical bases for cluster algebras. Journal of the American Mathematical Society, Tome 31 (2018) no. 2, pp. 497-608. doi: 10.1090/jams/890

[1] Alexeev, Valery, Brion, Michel Toric degenerations of spherical varieties Selecta Math. (N.S.) 2004 453 478

[2] Auroux, Denis Mirror symmetry and 𝑇-duality in the complement of an anticanonical divisor J. Gökova Geom. Topol. GGT 2007 51 91

[3] Berenstein, Arkady, Kazhdan, David Geometric and unipotent crystals Geom. Funct. Anal. 2000 188 236

[4] Berenstein, Arkady, Kazhdan, David Geometric and unipotent crystals. II. From unipotent bicrystals to crystal bases 2007 13 88

[5] Berenstein, Arkady, Zelevinsky, Andrei Tensor product multiplicities, canonical bases and totally positive varieties Invent. Math. 2001 77 128

[6] Berenstein, Arkady, Fomin, Sergey, Zelevinsky, Andrei Cluster algebras. III. Upper bounds and double Bruhat cells Duke Math. J. 2005 1 52

[7] Bernšteĭn, I. N., Gel′Fand, I. M., Ponomarev, V. A. Coxeter functors, and Gabriel’s theorem Uspehi Mat. Nauk 1973 19 33

[8] Bondal, A. I. Helices, representations of quivers and Koszul algebras 1990 75 95

[9] Brüstle, Thomas, Dupont, Grégoire, Pérotin, Matthieu On maximal green sequences Int. Math. Res. Not. IMRN 2014 4547 4586

[10] Caldero, Philippe Toric degenerations of Schubert varieties Transform. Groups 2002 51 60

[11] Canakci, Ilke, Lee, Kyungyong, Schiffler, Ralf On cluster algebras from unpunctured surfaces with one marked point Proc. Amer. Math. Soc. Ser. B 2015 35 49

[12] Cerulli Irelli, Giovanni, Keller, Bernhard, Labardini-Fragoso, Daniel, Plamondon, Pierre-Guy Linear independence of cluster monomials for skew-symmetric cluster algebras Compos. Math. 2013 1753 1764

[13] Cheung, Man Wai, Gross, Mark, Muller, Greg, Musiker, Gregg, Rupel, Dylan, Stella, Salvatore, Williams, Harold The greedy basis equals the theta basis: a rank two haiku J. Combin. Theory Ser. A 2017 150 171

[14] Cho, Cheol-Hyun, Oh, Yong-Geun Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds Asian J. Math. 2006 773 814

[15] Fock, Vladimir, Goncharov, Alexander Moduli spaces of local systems and higher Teichmüller theory Publ. Math. Inst. Hautes Études Sci. 2006 1 211

[16] Fock, Vladimir V., Goncharov, Alexander B. Cluster ensembles, quantization and the dilogarithm Ann. Sci. Éc. Norm. Supér. (4) 2009 865 930

[17] Fomin, Sergey, Shapiro, Michael, Thurston, Dylan Cluster algebras and triangulated surfaces. I. Cluster complexes Acta Math. 2008 83 146

[18] Fomin, Sergey, Zelevinsky, Andrei Double Bruhat cells and total positivity J. Amer. Math. Soc. 1999 335 380

[19] Fomin, Sergey, Zelevinsky, Andrei Cluster algebras. I. Foundations J. Amer. Math. Soc. 2002 497 529

[20] Fomin, Sergey, Zelevinsky, Andrei The Laurent phenomenon Adv. in Appl. Math. 2002 119 144

[21] Fomin, Sergey, Zelevinsky, Andrei Cluster algebras. II. Finite type classification Invent. Math. 2003 63 121

[22] Fomin, Sergey, Zelevinsky, Andrei Cluster algebras. IV. Coefficients Compos. Math. 2007 112 164

[23] Geiss, Christof, Leclerc, Bernard, Schröer, Jan Partial flag varieties and preprojective algebras Ann. Inst. Fourier (Grenoble) 2008 825 876

[24] Gekhtman, Michael, Shapiro, Michael, Vainshtein, Alek Cluster algebras and Poisson geometry 2010

[25] Goncharov, Alexander, Shen, Linhui Geometry of canonical bases and mirror symmetry Invent. Math. 2015 487 633

[26] Goodearl, Kenneth R., Yakimov, Milen T. Quantum cluster algebras and quantum nilpotent algebras Proc. Natl. Acad. Sci. USA 2014 9696 9703

[27] Gross, Mark Mirror symmetry for ℙ² and tropical geometry Adv. Math. 2010 169 245

[28] Gross, Mark Tropical geometry and mirror symmetry 2011

[29] Gross, Mark, Hacking, Paul, Keel, Sean Mirror symmetry for log Calabi-Yau surfaces I Publ. Math. Inst. Hautes Études Sci. 2015 65 168

[30] Gross, Mark, Hacking, Paul, Keel, Sean Moduli of surfaces with an anti-canonical cycle Compos. Math. 2015 265 291

[31] Gross, Mark, Hacking, Paul, Keel, Sean Birational geometry of cluster algebras Algebr. Geom. 2015 137 175

[32] Gross, Mark, Pandharipande, Rahul Quivers, curves, and the tropical vertex Port. Math. 2010 211 259

[33] Gross, Mark, Pandharipande, Rahul, Siebert, Bernd The tropical vertex Duke Math. J. 2010 297 362

[34] Gross, Mark, Siebert, Bernd From real affine geometry to complex geometry Ann. of Math. (2) 2011 1301 1428

[35] Gross, Mark, Siebert, Bernd Theta functions and mirror symmetry 2016 95 138

[36] Inaba, Michi-Aki, Iwasaki, Katsunori, Saito, Masa-Hiko Moduli of stable parabolic connections, Riemann-Hilbert correspondence and geometry of Painlevé equation of type VI. I Publ. Res. Inst. Math. Sci. 2006 987 1089

[37] Kac, V. G. Infinite root systems, representations of graphs and invariant theory Invent. Math. 1980 57 92

[38] Kac, V. G. Infinite root systems, representations of graphs and invariant theory. II J. Algebra 1982 141 162

[39] King, A. D. Moduli of representations of finite-dimensional algebras Quart. J. Math. Oxford Ser. (2) 1994 515 530

[40] Knutson, Allen, Tao, Terence The honeycomb model of 𝐺𝐿_{𝑛}(𝐶) tensor products. I. Proof of the saturation conjecture J. Amer. Math. Soc. 1999 1055 1090

[41] Kogan, Mikhail, Miller, Ezra Toric degeneration of Schubert varieties and Gelfand-Tsetlin polytopes Adv. Math. 2005 1 17

[42] Kollár, János Singularities of the minimal model program 2013

[43] Kontsevich, Maxim, Soibelman, Yan Affine structures and non-Archimedean analytic spaces 2006 321 385

[44] Kontsevich, Maxim, Soibelman, Yan Wall-crossing structures in Donaldson-Thomas invariants, integrable systems and mirror symmetry 2014 197 308

[45] Lee, Kyungyong, Schiffler, Ralf Positivity for cluster algebras Ann. of Math. (2) 2015 73 125

[46] Lee, Kyungyong, Li, Li, Zelevinsky, Andrei Greedy elements in rank 2 cluster algebras Selecta Math. (N.S.) 2014 57 82

[47] Matherne, Jacob P., Muller, Greg Computing upper cluster algebras Int. Math. Res. Not. IMRN 2015 3121 3149

[48] Matsumura, Hideyuki Commutative ring theory 1989

[49] Muller, Greg The existence of a maximal green sequence is not invariant under quiver mutation Electron. J. Combin. 2016

[50] Nakanishi, Tomoki, Zelevinsky, Andrei On tropical dualities in cluster algebras 2012 217 226

[51] Reineke, Markus Poisson automorphisms and quiver moduli J. Inst. Math. Jussieu 2010 653 667

[52] Reineke, Markus Cohomology of quiver moduli, functional equations, and integrality of Donaldson-Thomas type invariants Compos. Math. 2011 943 964

[53] Schofield, Aidan General representations of quivers Proc. London Math. Soc. (3) 1992 46 64

Cité par Sources :