Weak null singularities in general relativity
Journal of the American Mathematical Society, Tome 31 (2018) no. 1, pp. 1-63

Voir la notice de l'article provenant de la source American Mathematical Society

We construct a class of spacetimes (without symmetry assumptions) satisfying the vacuum Einstein equations with singular boundaries on two null hypersurfaces intersecting in the future on a 2-sphere. The metric of these spacetimes extends continuously beyond the singularities while the Christoffel symbols fail to be square integrable in a neighborhood of any point on the singular boundaries. The construction shows moreover that the singularities are stable in a suitable sense. These singularities are stronger than the impulsive gravitational spacetimes considered by Luk and Rodnianski, and conjecturally they are present in the interior of generic black holes arising from gravitational collapse.
DOI : 10.1090/jams/888

Luk, Jonathan 1

1 Department of Mathematics, Stanford University, Stanford, California 94305-2125
@article{10_1090_jams_888,
     author = {Luk, Jonathan},
     title = {Weak null singularities in general relativity},
     journal = {Journal of the American Mathematical Society},
     pages = {1--63},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2018},
     doi = {10.1090/jams/888},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/888/}
}
TY  - JOUR
AU  - Luk, Jonathan
TI  - Weak null singularities in general relativity
JO  - Journal of the American Mathematical Society
PY  - 2018
SP  - 1
EP  - 63
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/888/
DO  - 10.1090/jams/888
ID  - 10_1090_jams_888
ER  - 
%0 Journal Article
%A Luk, Jonathan
%T Weak null singularities in general relativity
%J Journal of the American Mathematical Society
%D 2018
%P 1-63
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/888/
%R 10.1090/jams/888
%F 10_1090_jams_888
Luk, Jonathan. Weak null singularities in general relativity. Journal of the American Mathematical Society, Tome 31 (2018) no. 1, pp. 1-63. doi: 10.1090/jams/888

[1] Bonanno, A., Droz, S., Israel, W., Morsink, S. M. Structure of the charged spherical black hole interior Proc. Roy. Soc. London Ser. A 1995 553 567

[2] Brady, Patrick R., Smith, John D. Black hole singularities: a numerical approach Phys. Rev. Lett. 1995 1256 1259

[3] Burko, Lior M. Structure of the black hole’s Cauchy-horizon singularity Phys. Rev. Lett. 1997 4958 4961

[4] Chandrasekhar, S., Hartle, J. B. On crossing the Cauchy horizon of a Reissner-Nordström black-hole Proc. Roy. Soc. London Ser. A 1982 301 315

[5] Christodoulou, Demetrios The formation of black holes in general relativity 2009

[6] Christodoulou, Demetrios, Klainerman, Sergiu The global nonlinear stability of the Minkowski space 1993

[7] Dafermos, Mihalis Stability and instability of the Cauchy horizon for the spherically symmetric Einstein-Maxwell-scalar field equations Ann. of Math. (2) 2003 875 928

[8] Dafermos, Mihalis The interior of charged black holes and the problem of uniqueness in general relativity Comm. Pure Appl. Math. 2005 445 504

[9] Dafermos, Mihalis Black holes without spacelike singularities Comm. Math. Phys. 2014 729 757

[10] Dafermos, Mihalis, Rodnianski, Igor A proof of Price’s law for the collapse of a self-gravitating scalar field Invent. Math. 2005 381 457

[11] Hiscock, William A. Evolution of the interior of a charged black hole Phys. Lett. A 1981 110 112

[12] Klainerman, Sergiu, Nicolã², Francesco The evolution problem in general relativity 2003

[13] Klainerman, Sergiu, Rodnianski, Igor On the formation of trapped surfaces Acta Math. 2012 211 333

[14] Luk, Jonathan On the local existence for the characteristic initial value problem in general relativity Int. Math. Res. Not. IMRN 2012 4625 4678

[15] Luk, Jonathan, Rodnianski, Igor Local propagation of impulsive gravitational waves Comm. Pure Appl. Math. 2015 511 624

[16] Mcnamara, J. M. Instability of black hole inner horizons Proc. Roy. Soc. London Ser. A 1978 499 517

[17] Mã¼Ller Zum Hagen, H. Characteristic initial value problem for hyperbolic systems of second order differential equations Ann. Inst. H. Poincaré Phys. Théor. 1990 159 216

[18] Ori, Amos, Flanagan, ÉAnna É. How generic are null spacetime singularities? Phys. Rev. D (3) 1996

[19] Penrose, Roger Gravitational collapse and space-time singularities Phys. Rev. Lett. 1965 57 59

[20] Penrose, Roger The geometry of impulsive gravitational waves 1972 101 115

[21] Poisson, E., Israel, W. Inner-horizon instability and mass inflation in black holes Phys. Rev. Lett. 1989 1663 1666

[22] Poisson, Eric, Israel, Werner Internal structure of black holes Phys. Rev. D (3) 1990 1796 1809

Cité par Sources :