Homological stability for moduli spaces of high dimensional manifolds. I
Journal of the American Mathematical Society, Tome 31 (2018) no. 1, pp. 215-264

Voir la notice de l'article provenant de la source American Mathematical Society

We prove a homological stability theorem for moduli spaces of simply connected manifolds of dimension $2n > 4$, with respect to forming connected sum with $S^n \times S^n$. This is analogous to Harer’s stability theorem for the homology of mapping class groups. Combined with previous work of the authors, it gives a calculation of the homology of the moduli spaces of manifolds diffeomorphic to connected sums of $S^n \times S^n$ in a range of degrees.
DOI : 10.1090/jams/884

Galatius, Søren 1 ; Randal-Williams, Oscar 2

1 Department of Mathematics, Stanford University, Stanford, California 94305
2 Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB, United Kingdom
@article{10_1090_jams_884,
     author = {Galatius, S\~A¸ren and Randal-Williams, Oscar},
     title = {Homological stability for moduli spaces of high dimensional manifolds. {I}},
     journal = {Journal of the American Mathematical Society},
     pages = {215--264},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2018},
     doi = {10.1090/jams/884},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/884/}
}
TY  - JOUR
AU  - Galatius, Søren
AU  - Randal-Williams, Oscar
TI  - Homological stability for moduli spaces of high dimensional manifolds. I
JO  - Journal of the American Mathematical Society
PY  - 2018
SP  - 215
EP  - 264
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/884/
DO  - 10.1090/jams/884
ID  - 10_1090_jams_884
ER  - 
%0 Journal Article
%A Galatius, Søren
%A Randal-Williams, Oscar
%T Homological stability for moduli spaces of high dimensional manifolds. I
%J Journal of the American Mathematical Society
%D 2018
%P 215-264
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/884/
%R 10.1090/jams/884
%F 10_1090_jams_884
Galatius, Søren; Randal-Williams, Oscar. Homological stability for moduli spaces of high dimensional manifolds. I. Journal of the American Mathematical Society, Tome 31 (2018) no. 1, pp. 215-264. doi: 10.1090/jams/884

[1] Atiyah, M. F., Hirzebruch, F. Bott periodicity and the parallelizability of the spheres Proc. Cambridge Philos. Soc. 1961 223 226

[2] Bak, Anthony On modules with quadratic forms 1969 55 66

[3] Bak, Anthony 𝐾-theory of forms 1981

[4] Binz, E., Fischer, H. R. The manifold of embeddings of a closed manifold 1981 310 329

[5] Berglund, Alexander, Madsen, Ib Homological stability of diffeomorphism groups Pure Appl. Math. Q. 2013 1 48

[6] Boldsen, Sã¸Ren K. Improved homological stability for the mapping class group with integral or twisted coefficients Math. Z. 2012 297 329

[7] Cerf, Jean Topologie de certains espaces de plongements Bull. Soc. Math. France 1961 227 380

[8] Charney, Ruth A generalization of a theorem of Vogtmann J. Pure Appl. Algebra 1987 107 125

[9] Galatius, Sã¸Ren, Randal-Williams, Oscar Detecting and realising characteristic classes of manifold bundles 2014 99 110

[10] Galatius, Sã¸Ren, Randal-Williams, Oscar Stable moduli spaces of high-dimensional manifolds Acta Math. 2014 257 377

[11] Galatius, Sã¸Ren, Randal-Williams, Oscar Abelian quotients of mapping class groups of highly connected manifolds Math. Ann. 2016 857 879

[12] Harer, John L. Stability of the homology of the mapping class groups of orientable surfaces Ann. of Math. (2) 1985 215 249

[13] Hirsch, Morris W. Immersions of manifolds Trans. Amer. Math. Soc. 1959 242 276

[14] Hatcher, Allen, Wahl, Nathalie Stabilization for mapping class groups of 3-manifolds Duke Math. J. 2010 205 269

[15] Ivanov, Nikolai V. On the homology stability for Teichmüller modular groups: closed surfaces and twisted coefficients 1993 149 194

[16] Jones, John, Rees, Elmer Kervaire’s invariant for framed manifolds 1978 141 147

[17] Kreck, Matthias Surgery and duality Ann. of Math. (2) 1999 707 754

[18] May, J. P., Sigurdsson, J. Parametrized homotopy theory 2006

[19] Mumford, David Towards an enumerative geometry of the moduli space of curves 1983 271 328

[20] Madsen, Ib, Weiss, Michael The stable moduli space of Riemann surfaces: Mumford’s conjecture Ann. of Math. (2) 2007 843 941

[21] Randal-Williams, Oscar ‘Group-completion’, local coefficient systems and perfection Q. J. Math. 2013 795 803

[22] Randal-Williams, Oscar Resolutions of moduli spaces and homological stability J. Eur. Math. Soc. (JEMS) 2016 1 81

[23] Spanier, Edwin H. Algebraic topology 1966

[24] Wall, C. T. C. On the orthogonal groups of unimodular quadratic forms Math. Ann. 1962 328 338

[25] Wall, C. T. C. Surgery on compact manifolds 1970

[26] Weiss, Michael What does the classifying space of a category classify? Homology Homotopy Appl. 2005 185 195

Cité par Sources :