Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_jams_882,
author = {Arinkin, D. and Gaitsgory, D.},
title = {The category of singularities as a crystal and global {Springer} fibers},
journal = {Journal of the American Mathematical Society},
pages = {135--214},
publisher = {mathdoc},
volume = {31},
number = {1},
year = {2018},
doi = {10.1090/jams/882},
url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/882/}
}
TY - JOUR AU - Arinkin, D. AU - Gaitsgory, D. TI - The category of singularities as a crystal and global Springer fibers JO - Journal of the American Mathematical Society PY - 2018 SP - 135 EP - 214 VL - 31 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/jams/882/ DO - 10.1090/jams/882 ID - 10_1090_jams_882 ER -
%0 Journal Article %A Arinkin, D. %A Gaitsgory, D. %T The category of singularities as a crystal and global Springer fibers %J Journal of the American Mathematical Society %D 2018 %P 135-214 %V 31 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/jams/882/ %R 10.1090/jams/882 %F 10_1090_jams_882
Arinkin, D.; Gaitsgory, D. The category of singularities as a crystal and global Springer fibers. Journal of the American Mathematical Society, Tome 31 (2018) no. 1, pp. 135-214. doi: 10.1090/jams/882
[1] , Singular support of coherent sheaves and the geometric Langlands conjecture Selecta Math. (N.S.) 2015 1 199
[2] , , Local cohomology and support for triangulated categories Ann. Sci. Ãc. Norm. Supér. (4) 2008 573 619
[3] , Compact generation of the category of D-modules on the stack of ðº-bundles on a curve Camb. J. Math. 2015 19 125
[4] ind-coherent sheaves Mosc. Math. J. 2013
[5] Sheaves of categories and the notion of 1-affineness 2015 127 225
[6] Outline of the proof of the geometric Langlands conjecture for ðºð¿â Astérisque 2015 1 112
[7] , Crystals and D-modules Pure Appl. Math. Q. 2014 57 154
[8] Subcategories of singularity categories via tensor actions Compos. Math. 2014 229 272
Cité par Sources :