Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_jams_881,
author = {Markovic, Vladimir},
title = {Harmonic maps and the {Schoen} conjecture},
journal = {Journal of the American Mathematical Society},
pages = {799--817},
publisher = {mathdoc},
volume = {30},
number = {3},
year = {2017},
doi = {10.1090/jams/881},
url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/881/}
}
Markovic, Vladimir. Harmonic maps and the Schoen conjecture. Journal of the American Mathematical Society, Tome 30 (2017) no. 3, pp. 799-817. doi: 10.1090/jams/881
[1] , Maximal surfaces and the universal Teichmüller space Invent. Math. 2010 279 333
[2] Liouville theorem for harmonic maps 1980 147 151
[3] , , Quasiconformal homeomorphisms and the convex hull boundary Ann. of Math. (2) 2004 305 336
[4] , Quasiconformal maps and Teichmüller theory 2007
[5] Remarks on the geometric behavior of harmonic maps between surfaces 1996 57 66
[6] , Harmonic extensions of quasiconformal maps to hyperbolic space Indiana Univ. Math. J. 1997 155 163
[7] , Uniqueness and regularity of proper harmonic maps Ann. of Math. (2) 1993 167 201
[8] , Uniqueness and regularity of proper harmonic maps. II Indiana Univ. Math. J. 1993 591 635
[9] Harmonic diffeomorphisms of noncompact surfaces and Teichmüller spaces J. London Math. Soc. (2) 2002 103 114
[10] Harmonic maps between 3-dimensional hyperbolic spaces Invent. Math. 2015 921 951
[11] The role of harmonic mappings in rigidity and deformation problems 1993 179 200
[12] , Lectures on harmonic maps 1997
[13] , Quasi-conformal harmonic diffeomorphism and the universal Teichmüller space J. Differential Geom. 1995 368 410
[14] Constant mean curvature surface, harmonic maps, and universal Teichmüller space J. Differential Geom. 1992 643 657
[15] The Teichmüller theory of harmonic maps J. Differential Geom. 1989 449 479
[16] High energy degeneration of harmonic maps between surfaces and rays in Teichmüller space Topology 1991 517 540
Cité par Sources :