Harmonic maps and the Schoen conjecture
Journal of the American Mathematical Society, Tome 30 (2017) no. 3, pp. 799-817

Voir la notice de l'article provenant de la source American Mathematical Society

We show that every quasisymmetric homeomorphism of the circle $\partial {\mathbb {H}^2}$ admits a harmonic quasiconformal extension to the hyperbolic plane $\mathbb {H}^2$. This proves the Schoen conjecture.
DOI : 10.1090/jams/881

Markovic, Vladimir 1

1 Department of Mathematics, California Institute of Technology, Pasadena, California 91125
@article{10_1090_jams_881,
     author = {Markovic, Vladimir},
     title = {Harmonic maps and the {Schoen} conjecture},
     journal = {Journal of the American Mathematical Society},
     pages = {799--817},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2017},
     doi = {10.1090/jams/881},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/881/}
}
TY  - JOUR
AU  - Markovic, Vladimir
TI  - Harmonic maps and the Schoen conjecture
JO  - Journal of the American Mathematical Society
PY  - 2017
SP  - 799
EP  - 817
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/881/
DO  - 10.1090/jams/881
ID  - 10_1090_jams_881
ER  - 
%0 Journal Article
%A Markovic, Vladimir
%T Harmonic maps and the Schoen conjecture
%J Journal of the American Mathematical Society
%D 2017
%P 799-817
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/881/
%R 10.1090/jams/881
%F 10_1090_jams_881
Markovic, Vladimir. Harmonic maps and the Schoen conjecture. Journal of the American Mathematical Society, Tome 30 (2017) no. 3, pp. 799-817. doi: 10.1090/jams/881

[1] Bonsante, Francesco, Schlenker, Jean-Marc Maximal surfaces and the universal Teichmüller space Invent. Math. 2010 279 333

[2] Cheng, Shiu Yuen Liouville theorem for harmonic maps 1980 147 151

[3] Epstein, D. B. A., Marden, A., Markovic, V. Quasiconformal homeomorphisms and the convex hull boundary Ann. of Math. (2) 2004 305 336

[4] Fletcher, A., Markovic, V. Quasiconformal maps and Teichmüller theory 2007

[5] Han, Zheng-Chao Remarks on the geometric behavior of harmonic maps between surfaces 1996 57 66

[6] Hardt, Robert, Wolf, Michael Harmonic extensions of quasiconformal maps to hyperbolic space Indiana Univ. Math. J. 1997 155 163

[7] Li, Peter, Tam, Luen-Fai Uniqueness and regularity of proper harmonic maps Ann. of Math. (2) 1993 167 201

[8] Li, Peter, Tam, Luen-Fai Uniqueness and regularity of proper harmonic maps. II Indiana Univ. Math. J. 1993 591 635

[9] Markovic, Vladimir Harmonic diffeomorphisms of noncompact surfaces and Teichmüller spaces J. London Math. Soc. (2) 2002 103 114

[10] Markovic, Vladimir Harmonic maps between 3-dimensional hyperbolic spaces Invent. Math. 2015 921 951

[11] Schoen, Richard M. The role of harmonic mappings in rigidity and deformation problems 1993 179 200

[12] Schoen, R., Yau, S. T. Lectures on harmonic maps 1997

[13] Tam, Luen-Fai, Wan, Tom Y. H. Quasi-conformal harmonic diffeomorphism and the universal Teichmüller space J. Differential Geom. 1995 368 410

[14] Wan, Tom Yau-Heng Constant mean curvature surface, harmonic maps, and universal Teichmüller space J. Differential Geom. 1992 643 657

[15] Wolf, Michael The Teichmüller theory of harmonic maps J. Differential Geom. 1989 449 479

[16] Wolf, Michael High energy degeneration of harmonic maps between surfaces and rays in Teichmüller space Topology 1991 517 540

Cité par Sources :