Convexity of the 𝐾-energy on the space of Kähler metrics and uniqueness of extremal metrics
Journal of the American Mathematical Society, Tome 30 (2017) no. 4, pp. 1165-1196

Voir la notice de l'article provenant de la source American Mathematical Society

We establish the convexity of Mabuchi’s $K$-energy functional along weak geodesics in the space of Kähler potentials on a compact Kähler manifold, thus confirming a conjecture of Chen, and give some applications in Kähler geometry, including a proof of the uniqueness of constant scalar curvature metrics (or more generally extremal metrics) modulo automorphisms. The key ingredient is a new local positivity property of weak solutions to the homogeneous Monge-Ampère equation on a product domain, whose proof uses plurisubharmonic variation of Bergman kernels.
DOI : 10.1090/jams/880

Berman, Robert 1 ; Berndtsson, Bo 1

1 Department of Mathematical Sciences, Chalmers University of Technology and the University of Gothenburg, SE-412 96 Gothenburg, Sweden
@article{10_1090_jams_880,
     author = {Berman, Robert and Berndtsson, Bo},
     title = {Convexity of the {\dh}{\textthreequarters}-energy on the space of {K\~A{\textcurrency}hler} metrics and uniqueness of extremal metrics},
     journal = {Journal of the American Mathematical Society},
     pages = {1165--1196},
     publisher = {mathdoc},
     volume = {30},
     number = {4},
     year = {2017},
     doi = {10.1090/jams/880},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/880/}
}
TY  - JOUR
AU  - Berman, Robert
AU  - Berndtsson, Bo
TI  - Convexity of the 𝐾-energy on the space of Kähler metrics and uniqueness of extremal metrics
JO  - Journal of the American Mathematical Society
PY  - 2017
SP  - 1165
EP  - 1196
VL  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/jams/880/
DO  - 10.1090/jams/880
ID  - 10_1090_jams_880
ER  - 
%0 Journal Article
%A Berman, Robert
%A Berndtsson, Bo
%T Convexity of the 𝐾-energy on the space of Kähler metrics and uniqueness of extremal metrics
%J Journal of the American Mathematical Society
%D 2017
%P 1165-1196
%V 30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/jams/880/
%R 10.1090/jams/880
%F 10_1090_jams_880
Berman, Robert; Berndtsson, Bo. Convexity of the 𝐾-energy on the space of Kähler metrics and uniqueness of extremal metrics. Journal of the American Mathematical Society, Tome 30 (2017) no. 4, pp. 1165-1196. doi: 10.1090/jams/880

[1] Bando, Shigetoshi, Mabuchi, Toshiki Uniqueness of Einstein Kähler metrics modulo connected group actions 1987 11 40

[2] Bedford, Eric, Burns, Dan Holomorphic mapping of annuli in 𝐶ⁿ and the associated extremal function Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1979 381 414

[3] Bedford, Eric, Fornã¦Ss, John Erik Counterexamples to regularity for the complex Monge-Ampère equation Invent. Math. 1978/79 129 134

[4] Berman, Robert Super Toeplitz operators on line bundles J. Geom. Anal. 2006 1 22

[5] Berman, Robert, Demailly, Jean-Pierre Regularity of plurisubharmonic upper envelopes in big cohomology classes 2012 39 66

[6] Eyssidieux, Philippe, Guedj, Vincent, Zeriahi, Ahmed Singular Kähler-Einstein metrics J. Amer. Math. Soc. 2009 607 639

[7] Berndtsson, Bo Subharmonicity properties of the Bergman kernel and some other functions associated to pseudoconvex domains Ann. Inst. Fourier (Grenoble) 2006 1633 1662

[8] Berndtsson, Bo A Brunn-Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry Invent. Math. 2015 149 200

[9] Bouche, Thierry Convergence de la métrique de Fubini-Study d’un fibré linéaire positif Ann. Inst. Fourier (Grenoble) 1990 117 130

[10] Calabi, E., Chen, X. X. The space of Kähler metrics. II J. Differential Geom. 2002 173 193

[11] Chen, Xiuxiong The space of Kähler metrics J. Differential Geom. 2000 189 234

[12] Chen, Xiuxiong On the lower bound of the Mabuchi energy and its application Internat. Math. Res. Notices 2000 607 623

[13] Chen, Xiuxiong Space of Kähler metrics. III. On the lower bound of the Calabi energy and geodesic distance Invent. Math. 2009 453 503

[14] Chen, X. X., Tian, G. Geometry of Kähler metrics and foliations by holomorphic discs Publ. Math. Inst. Hautes Études Sci. 2008 1 107

[15] Li, Chi Constant scalar curvature Kähler metric obtains the minimum of K-energy Int. Math. Res. Not. IMRN 2011 2161 2175

[16] Darvas, Tamã¡S The Mabuchi geometry of finite energy classes Adv. Math. 2015 182 219

[17] Darvas, Tamã¡S, Lempert, Lã¡Szlã³ Weak geodesics in the space of Kähler metrics Math. Res. Lett. 2012 1127 1135

[18] Donaldson, S. K. Remarks on gauge theory, complex geometry and 4-manifold topology 1997 384 403

[19] Donaldson, S. K. Symmetric spaces, Kähler geometry and Hamiltonian dynamics 1999 13 33

[20] Donaldson, S. K. Scalar curvature and projective embeddings. I J. Differential Geom. 2001 479 522

[21] Donaldson, S. K. Scalar curvature and projective embeddings. II Q. J. Math. 2005 345 356

[22] Donaldson, S. K. Scalar curvature and stability of toric varieties J. Differential Geom. 2002 289 349

[23] Guan, Daniel On modified Mabuchi functional and Mabuchi moduli space of Kähler metrics on toric bundles Math. Res. Lett. 1999 547 555

[24] Guedj, Vincent, Zeriahi, Ahmed The weighted Monge-Ampère energy of quasiplurisubharmonic functions J. Funct. Anal. 2007 442 482

[25] Fine, Joel Constant scalar curvature Kähler metrics on fibred complex surfaces J. Differential Geom. 2004 397 432

[26] Futaki, A. An obstruction to the existence of Einstein Kähler metrics Invent. Math. 1983 437 443

[27] Futaki, Akito, Mabuchi, Toshiki Bilinear forms and extremal Kähler vector fields associated with Kähler classes Math. Ann. 1995 199 210

[28] Iwasawa, Kenkichi On some types of topological groups Ann. of Math. (2) 1949 507 558

[29] Dembo, Amir, Zeitouni, Ofer Large deviations techniques and applications 1993

[30] Lempert, Lã¡Szlã³, Vivas, Liz Geodesics in the space of Kähler metrics Duke Math. J. 2013 1369 1381

[31] Mabuchi, Toshiki 𝐾-energy maps integrating Futaki invariants Tohoku Math. J. (2) 1986 575 593

[32] Mabuchi, Toshiki Some symplectic geometry on compact Kähler manifolds. I Osaka J. Math. 1987 227 252

[33] Mabuchi, Toshiki Uniqueness of extremal Kähler metrics for an integral Kähler class Internat. J. Math. 2004 531 546

[34] Maitani, Fumio, Yamaguchi, Hiroshi Variation of Bergman metrics on Riemann surfaces Math. Ann. 2004 477 489

[35] Phong, D. H., Sturm, Jacob Scalar curvature, moment maps, and the Deligne pairing Amer. J. Math. 2004 693 712

[36] Ross, Julius, Nystrã¶M, David Witt Harmonic discs of solutions to the complex homogeneous Monge-Ampère equation Publ. Math. Inst. Hautes Études Sci. 2015 315 335

[37] Sano, Yuji, Tipler, Carl Extremal metrics and lower bound of the modified K-energy J. Eur. Math. Soc. (JEMS) 2015 2289 2310

[38] Semmes, Stephen Complex Monge-Ampère and symplectic manifolds Amer. J. Math. 1992 495 550

[39] Simanca, Santiago R. A 𝐾-energy characterization of extremal Kähler metrics Proc. Amer. Math. Soc. 2000 1531 1535

[40] Siu, Yum Tong Calculus inequalities derived from holomorphic Morse inequalities Math. Ann. 1990 549 558

[41] Song, Jian, Tian, Gang Canonical measures and Kähler-Ricci flow J. Amer. Math. Soc. 2012 303 353

[42] Stoppa, Jacopo Twisted constant scalar curvature Kähler metrics and Kähler slope stability J. Differential Geom. 2009 663 691

[43] Tian, Gang On a set of polarized Kähler metrics on algebraic manifolds J. Differential Geom. 1990 99 130

[44] Tian, Gang Kähler-Einstein metrics with positive scalar curvature Invent. Math. 1997 1 37

[45] Tian, Gang Canonical metrics in Kähler geometry 2000

[46] Tian, Gang, Zhu, Xiaohua Uniqueness of Kähler-Ricci solitons Acta Math. 2000 271 305

[47] Tian, Gang, Zhu, Xiaohua A new holomorphic invariant and uniqueness of Kähler-Ricci solitons Comment. Math. Helv. 2002 297 325

[48] Yau, Shing-Tung Nonlinear analysis in geometry 1986 54

Cité par Sources :