Long gaps between primes
Journal of the American Mathematical Society, Tome 31 (2018) no. 1, pp. 65-105
Cet article a éte moissonné depuis la source American Mathematical Society
Let $p_n$ denote the $n$th prime. We prove that \[ \max _{p_{n} \leqslant X} (p_{n+1}-p_n) \gg \frac {\log X \log \log X\log \log \log \log X}{\log \log \log X}\] for sufficiently large $X$, improving upon recent bounds of the first, second, third, and fifth authors and of the fourth author. Our main new ingredient is a generalization of a hypergraph covering theorem of Pippenger and Spencer, proven using the Rödl nibble method.
Affiliations des auteurs :
Ford, Kevin 1 ; Green, Ben 2 ; Konyagin, Sergei 3 ; Maynard, James 2 ; Tao, Terence 4
@article{10_1090_jams_876,
author = {Ford, Kevin and Green, Ben and Konyagin, Sergei and Maynard, James and Tao, Terence},
title = {Long gaps between primes},
journal = {Journal of the American Mathematical Society},
pages = {65--105},
year = {2018},
volume = {31},
number = {1},
doi = {10.1090/jams/876},
url = {http://geodesic.mathdoc.fr/articles/10.1090/jams/876/}
}
TY - JOUR AU - Ford, Kevin AU - Green, Ben AU - Konyagin, Sergei AU - Maynard, James AU - Tao, Terence TI - Long gaps between primes JO - Journal of the American Mathematical Society PY - 2018 SP - 65 EP - 105 VL - 31 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1090/jams/876/ DO - 10.1090/jams/876 ID - 10_1090_jams_876 ER -
%0 Journal Article %A Ford, Kevin %A Green, Ben %A Konyagin, Sergei %A Maynard, James %A Tao, Terence %T Long gaps between primes %J Journal of the American Mathematical Society %D 2018 %P 65-105 %V 31 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1090/jams/876/ %R 10.1090/jams/876 %F 10_1090_jams_876
Ford, Kevin; Green, Ben; Konyagin, Sergei; Maynard, James; Tao, Terence. Long gaps between primes. Journal of the American Mathematical Society, Tome 31 (2018) no. 1, pp. 65-105. doi: 10.1090/jams/876
Cité par Sources :